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Motivation: Road geometry estimation

Road geometry

the upcoming road geometry in front of the ego vehicle is of interest.

received from the HD map or estimated from the on-board sensors.

many of the features within ADAS technologies depend upon accurate
information about it.

the importance of the road geometry estimation accurately for ADAS
systems has long been recognized:

crucial for the planning and control module;
development of planning strategies;
real-time route guidance in advanced navigation systems, among others.
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Literature review: Road geometry estimation

Techniques of road geometry estimation has been investigated.

Vision based: Chapuis et al. (2002); Wang et al. (2004, 2008); McCall &

Trivedi (2006); Shin et al. (2014);

Radar based: Yamaguchi et al. (1996); Kaliyaperumal et al. (2001); Wijesoma

et al. (2004);

Lidar based: Peterson et al. (2008); Yang et al. (2012); Quackenbush et

al. (2003);

Combined: Ma et al. (2000); Alessandretti et al. (2007); Lundquist et

al. (2011); Garc̀ıa-Fernàndez et al. (2014); Hammarstrand et al (2016);

Included objects tracking: Eidehall et al. (2007); Garc̀ıa-Fernàndez et

al. (2014); Hammarstrand et al. (2016);

Using trails of leading vehicles to estimate the road geometry?
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Next generation simulation (NGSIM) data

Overlook of the highway vehicle trajectory data.

The NGSIM data were originally collected by digital video cameras
mounted on top of buildings located at US-101 and I-80 freeways in
California.

The sampling frequency of the NGSIM trajectories is 10 Hz.
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The NGSIM datasets were extracted from the resulting video images.
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The NGSIM datasets were extracted from the resulting video images.

We process the NGSIM datasets and use the raster images for vehicles as
illustration.

Y.-C. Zhang Road Geometry Estimation January 17, 2025 8 / 39



Road geometry definition and coordinate system

The geometry of the road is defined as the shape that is parallel to the left
and right road edges on a single road.

We do not restrict the road shape to the middle of the host vehicle’s lane.

We use the third degree polynomial in which the lateral position is treated
as a function of longitudinal position to describe the shape of the road.
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Road geometry definition and coordinate system

The geometry of the road is defined as the shape that is parallel to the left
and right road edges on a single road.

We do not restrict the road shape to the middle of the host vehicle’s lane.

We use the third degree polynomial in which the lateral position is treated
as a function of longitudinal position to describe the shape of the road.

Illustration of the estimated road shape (in yellow) and the true road shape
(in purple).

We call this mean trajectory dominated by trails the dominant road shape
(DRS).
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We use a stationary frame of reference where the local coordinate system
[xlk , ylk ] follows the ISO-8855 standard and is attached to the host vehicle.

The subscript k refers to a time instance tk and the superscript lk is
referring to the local coordinate system at time tk.

This local coordinate frame moves with the host vehicle and the
measurement in this local coordinate frame is denoted as (xlkk , y

lk
k )T .

The position and the orientation of the host vehicle in this local coordinate
frame is expressed in the fixed global Cartesian coordinate system [xg, yg]
as (xghk, y

g
hk)

T , and ϕghk, respectively.

xg

yg

(xghk, y
g
hk)

xlkylk

ψg
hk

(xlkk , y
lk
k )/(xgk, y

g
k)
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There exists a non-linear transformation from the global coordinate frame
to the local coordinate frame.

The measurement (xgk, y
g
k)

T is transformed to (xlkk , y
lk
k )T using(

xlkk
ylkk

)
=

(
cosψg

hk sinψg
hk

− sinψg
hk cosψg

hk

)((
xgk
ygk

)
−
(
xghk
yghk

))
(1)

We assume that both the position (xghk, y
g
hk)

T and the orientation ψg
hk of

the host vehicle are known for any time instance tk.

The inverse transformation can be calculated in a similar way using(
xgk
ygk

)
=

(
cosψg

hk − sinψg
hk

sinψg
hk cosψg

hk

)(
xlkk
ylkk

)
+

(
xghk
yghk

)
, (2)
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Observations and vehicle trails

Suppose the host vehicle has tracked the i-th leading vehicle from time tj
to time tl. For each time instance tk, with j ≤ k ≤ l, the reference point
of guest vehicle (xlkik, y

lk
ik)

T is then converted into (xgik, y
g
ik)

T .

The collection of all pairs {(xgik, y
g
ik)

T }j≤k≤l forms the samples from i-th
vehicle’s trail. Any newly observed measurements of the i-th vehicle are
appended to the i-th vehicle’s trail in the same manner.

The size of trail samples grows extremely rapidly. To keep the trail sample
size under control and also to preserve the shape of the trail, we introduce
trail compression and chopping mechanisms to address this issue.

Trail compression: Squeezes samples of trails that do not contribute to the
fundamental road geometry. This naturally gets us the behavior where we
keep more samples through curves and fewer samples through
straightaways.

Trail chopping: Removes trail samples that are obsolete. With the host
vehicle moving forward, the trail samples behind are not useful anymore for
upcoming road geometry
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Modeling the road shape using vehicle trails

The real road shape is designed to be smooth enough for safe driving.

We assume the road shape is a smooth function in which the lateral
position is related to the longitudinal position in the local coordinate frame:

y = µ(x), (3)

We work in the local coordinate frame and assume that the DRS can be
modeled by a third-degree polynomial

y = β0 + β1x+ β2x
2 + β3x

3, (4)

where β = (β0, . . . , β3)
T are unknown coefficients.

The aim is to estimate the unknown coefficients β such that the DRS
presented in (4) can be used to delineate the road shape µ in (3).
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Linear mixed model (LMM) for trail samples

The LMM algorithm is running at each time tk. Note that the following
notations are at time tk without specifying the time step k.

m is the number of leading vehicles

ni is the number of trail samples of the i-th vehicle, i = 1, . . . ,m.
n =

∑m
i=1 ni is the trail sample in total.

xlkij is the j-th longitudinal position of the trail sample of i-th vehicle.

ylkij is the j-th lateral position of the trail sample of i-th vehicle,
j = 1, . . . , ni.

αi is the lateral offset of the vehicle to the DRS.

ϵij is the measurement error.
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We assume that αi has mean 0 and variance σ2
α, and ϵij has mean 0 and

variance σ2. Both of them are mutually independent.

The model is

ylkij = β0 + β1x
lk
ij + β2(x

lk
ij )

2 + β3(x
lk
ij )

3 + αi + ϵij , (5)

for i = 1, . . . ,m and j = 1, . . . , ni.

The variance-covariance structure of ylkij can be easily derived as

Var(ylkij ) = σ2
α + σ2 and Cov(ylkij , y

lk
il ) = σ2

α for j ̸= l.

The σ2
α is the covariance between every pair of sample from the same

vehicle.
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In matrix notation, the model can be rewrite as

yi = Xiβ + 1iαi + ϵi.

E(yi) = Xiβ and Var(yi) = Vi, where Vi = σ2
α1ni1

T
ni

+ σ2Ini .

We then represent the vector of trail data for all vehicles:

y = Xβ +Zα+ ϵ

where Z = (11, . . . ,1m)T .

E(y) = Xβ and Var(y) = V , where V = σ2
αZZT + σ2I

We can thus use the methodology that has been developed for LMMs in
this context.
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Likelihood inference and parameter estimation

The estimation of the unknown coefficients β and α clearly depends on
the variance-covariance components σ2

α and σ2.

It is convenient to assume that both of α and ϵ are distributed normally.

Then y has the normal distribution with mean vector Xβ and variance
matrix V .

When σ2
α and σ2 are known, then the estimator of β is the least squares

estimator
β̂ =

(
XTV −1X

)−1
XTV −1y, (6)

and the estimator of α̂ is the posterior mean

α̂ = σ2
αZ

TV −1(y −Xβ̂), (7)

where V = σ2
αZZT + σ2In.
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When σ2
α and σ2 are unknown, we need to estimate σ2

α and σ2 and replace

them by their estimators σ̂2
α and σ̂2, and set V̂ = σ̂2

αZZT + σ̂2I, then

replace V by V̂ in the above equations.

The variance components σ2
α and σ2 are estimated either using ML or

REML.

The marginal log-likelihood for computing ML estimates is given by

l(β, σ2
α, σ

2) = −1

2
log |V | − 1

2
(y −Xβ)TV −1(y −Xβ). (8)

and similarly for REML is given by

lR(β, σ
2
α, σ

2) = l(β, σ2
α, σ

2)− 1

2
log

∣∣XTV −1X
∣∣ . (9)
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Since α2
α and σ2 are rarely known, we need to estimate β, σ2

α, and σ
2

simultaneously. This can be done by EM or Newton-Raphson algorithms
for (8) and (9).

Not numerically stable to estimate β, σ2
α, and σ

2 simultaneously.

Another way is treating the unknown β as nuisance parameters to profile
out the likelihood.

Let θ = (σ2
α, σ

2)T and denote V (θ) the variance V as a function of θ.

The log-likelihood for (β,θ)T in (8) can be rewritten as:

l(β,θ) = −1

2
log |V (θ)| − 1

2
(y −Xβ)T (V (θ))−1(y −Xβ). (10)

If we maximize (10) for fixed θ with respect to β, we get

β̃(θ) :=
(
XT (V (θ))−1X

)−1
XT (V (θ))−1y,

which has exactly the same formula and analogous solution as we stated in
(6).
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Replacing the β with β̃(θ) in (10), we derive the profile log-likelihood

lP (θ) := −1

2
log |V (θ)| − 1

2
(y −Xβ̃(θ))T (V (θ))−1(y −Xβ̃(θ)). (11)

The profile log-likelihood for REML estimates becomes

lR(θ) = lP (θ)−
1

2
log |XT (V (θ))−1X|. (12)

The variance parameters θ are estimated by θ̂ which maximizes lR in (12).

The estimates of β are

β̂ =
(
XT V̂ −1X

)
XT V̂ −1y,

and similarly the predictions of α are

α̂ = σ̂2
αZ

T V̂ −1(y −Xβ̂),

where V̂ = V (θ̂).

Y.-C. Zhang Road Geometry Estimation January 17, 2025 23 / 39



Replacing the β with β̃(θ) in (10), we derive the profile log-likelihood

lP (θ) := −1

2
log |V (θ)| − 1

2
(y −Xβ̃(θ))T (V (θ))−1(y −Xβ̃(θ)). (11)

The profile log-likelihood for REML estimates becomes

lR(θ) = lP (θ)−
1

2
log |XT (V (θ))−1X|. (12)

The variance parameters θ are estimated by θ̂ which maximizes lR in (12).

The estimates of β are

β̂ =
(
XT V̂ −1X

)
XT V̂ −1y,

and similarly the predictions of α are

α̂ = σ̂2
αZ

T V̂ −1(y −Xβ̂),

where V̂ = V (θ̂).

Y.-C. Zhang Road Geometry Estimation January 17, 2025 23 / 39



Replacing the β with β̃(θ) in (10), we derive the profile log-likelihood

lP (θ) := −1

2
log |V (θ)| − 1

2
(y −Xβ̃(θ))T (V (θ))−1(y −Xβ̃(θ)). (11)

The profile log-likelihood for REML estimates becomes

lR(θ) = lP (θ)−
1

2
log |XT (V (θ))−1X|. (12)

The variance parameters θ are estimated by θ̂ which maximizes lR in (12).

The estimates of β are

β̂ =
(
XT V̂ −1X

)
XT V̂ −1y,

and similarly the predictions of α are

α̂ = σ̂2
αZ

T V̂ −1(y −Xβ̂),

where V̂ = V (θ̂).

Y.-C. Zhang Road Geometry Estimation January 17, 2025 23 / 39



Replacing the β with β̃(θ) in (10), we derive the profile log-likelihood

lP (θ) := −1

2
log |V (θ)| − 1

2
(y −Xβ̃(θ))T (V (θ))−1(y −Xβ̃(θ)). (11)

The profile log-likelihood for REML estimates becomes

lR(θ) = lP (θ)−
1

2
log |XT (V (θ))−1X|. (12)

The variance parameters θ are estimated by θ̂ which maximizes lR in (12).

The estimates of β are

β̂ =
(
XT V̂ −1X

)
XT V̂ −1y,

and similarly the predictions of α are

α̂ = σ̂2
αZ

T V̂ −1(y −Xβ̂),

where V̂ = V (θ̂).

Y.-C. Zhang Road Geometry Estimation January 17, 2025 23 / 39



There is no simple one-step solution. REML estimation of θ requires an
iterative procedure.

we adopt the Newton-Raphson algorithm to estimate θ in (12) and apply
the orthogonality convergence criterion to determine convergence.

To make the iterations converge quickly, we use the results of θ̂ from
previous time tk−1 as a reasonable initial value for iterations at time tk.
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Experimental evaluation

We use NGSIM US-101 and I-80 datasets for our experiments.

The detail description of the dataset is available here:
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

The scope of the road shape is limited to a single road. Leading vehicles
taking forks or exits are excluded from the estimation of the road model.

Overall, 5 lanes and 5047 vehicles were analyzed for the US-101 dataset
and 6 lanes and 5033 vehicles were analyzed for the I-80 dataset.

The ground truth (lane centerline) was generated by excluding trajectories
of lane-changing vehicles and fitting all in-lane trajectories with a
smoothing spline function.

The performance of the DRS will be measured by comparing it to the
generated ground truth.
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Data preparation and process

For each simulation run, we treat one vehicle as the host vehicle and other
vehicles as guests.

For the host vehicle at each time step k, the global position (xghk, y
g
hk) is

directly from the dataset and the orientation ψg
hk is estimated from two

consecutive points (preprocessed and smoothed).

The host vehicle is attached with a local coordinate frame lk and its
position is always at the origin in the local coordinate frame.

For the i-th guest vehicle at time step k, we use the global position
(xgik, y

g
ik) from the dataset to convert it into the local coordinate (xlkik, y

lk
ik)

by using (1). This conversion happens for every time step k.
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(a) FoV and tracked
vehicles
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Performance measure

We use the root mean square error (RMSE) to calculate the lateral
difference between the estimated DRS and the ground truth.

The RMSE is defined as

RMSE =

√√√√ 1

K

K∑
k=1

(ŷk − yk)
2
,

where ŷk is the lateral value of estimated DRS and yk is the lateral value
of the ground truth.

We report the value of RMSE downrange from 10 to 100 meters ahead of
the road, sampled every 10 meters, for each simulation run.
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(a) US-101 dataset
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(b) I-80 dataset
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Figure: Boxplot of RMSE with different distances ahead of the road for (a) US-101
dataset with 5047 simulation runs and (b) I-80 dataset with 5033 simulation runs.
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(a) A lane change trail
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Effects of trail compression and lane-changing vehicles

To explore the effects of the trail compression on the estimated DRS, as
well as how lane-changing vehicles affect the behavior of the estimated
DRS, we investigate the performance by comparing the following methods:

DRS: The trail samples were compressed and chopped.
DRSu: The trail samples were processed with the trail chopping but
without the trail compression. The subscript u means uncompressed.
DRS0: Same as the DRS, but the trails from lane-changing vehicles were
excluded from the LMM process.
DRSu0: Same as the DRSu, but the trails from lane-changing vehicles were
excluded from the LMM process.

For ease of comparison, we calculate the sample means with the associated
standard errors of the RMSE values for the above four methods at different
distances.
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Table: The offset difference of the estimated DRS compared to ground truth at each
distance in terms of averaged RMSE (standard error in parenthesis) with/without the
trail compression and with/without lane-changing vehicles for both datasets.

US-101
Distance (m)

10 20 30 40 50 60 70 80 90 100

DRS
0.0640 0.1239 0.1763 0.2162 0.2489 0.2754 0.3070 0.3503 0.3851 0.4718
(0.0212) (0.0441) (0.0724) (0.1056) (0.1662) (0.2307) (0.2677) (0.3194) (0.3526) (0.4865)

DRSu
0.0653 0.1283 0.1868 0.2316 0.2670 0.2942 0.3258 0.3727 0.4123 0.5032
(0.0224) (0.0488) (0.0805) (0.1157) (0.1828) (0.2537) (0.2873) (0.3430) (0.3766) (0.5163)

DRS0
0.0590 0.1121 0.1532 0.1806 0.1983 0.2139 0.2357 0.2706 0.3036 0.3485
(0.0173) (0.0309) (0.0432) (0.0654) (0.1049) (0.1414) (0.1719) (0.2192) (0.2721) (0.3460)

DRSu0
0.0608 0.1168 0.1633 0.1949 0.2140 0.2299 0.2511 0.2887 0.3271 0.3765
(0.0180) (0.0328) (0.0472) (0.0710) (0.1136) (0.1534) (0.1837) (0.2355) (0.2914) (0.3704)
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Table: The offset difference of the estimated DRS compared to ground truth at each
distance in terms of averaged RMSE (standard error in parenthesis) with/without the
trail compression and with/without lane-changing vehicles for both datasets.

I-80
Distance (m)

10 20 30 40 50 60 70 80 90 100

DRS
0.0892 0.1705 0.2437 0.2970 0.3352 0.3719 0.4020 0.4566 0.5651 0.4914
(0.0413) (0.0821) (0.1322) (0.2074) (0.2875) (0.3530) (0.4003) (0.4272) (0.5755) (0.4466)

DRSu
0.0928 0.1805 0.2637 0.3225 0.3626 0.3996 0.4354 0.4806 0.5977 0.5134
(0.0443) (0.0918) (0.1498) (0.2319) (0.3199) (0.3830) (0.4825) (0.4534) (0.6839) (0.4571)

DRS0
0.0761 0.1404 0.1893 0.2273 0.2558 0.2863 0.3295 0.4091 0.4278 0.4110
(0.0342) (0.0448) (0.1018) (0.1536) (0.2434) (0.3067) (0.3543) (0.3753) (0.4498) (0.3655)

DRSu0
0.0795 0.1486 0.2042 0.2464 0.2755 0.3079 0.3518 0.4284 0.4694 0.4572
(0.0783) (0.1281) (0.1720) (0.2336) (0.3190) (0.2444) (0.3127) (0.4062) (0.4364) (0.3789)
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(a) US-101 dataset
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(b) I-80 dataset
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Figure: Averaged RMSE of DRS, DRSu, DRS0, and DRSu0 at different distances. (a)
US-101 dataset and (b) I-80 dataset.
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Computational efficiency

We conduct a time benchmark using simple linux unity for resource
management (SLURM) computing resource on the high-performance
computing cluster.

The core processors are Intel® Xeon® CPU E5-2670 v2 (25M Cache, 2.50
GHz). We use one core for one simulation run.

Table: The mean and the standard deviation (in parenthesis) of modeling time in
seconds for different trail sample sizes.

Dataset
Trail sample size

≤50 51-100 101-150 151-200 201-250

US-101
0.0090 0.0093 0.0099 0.0105 –
(0.0020) (0.0020) (0.0019) (0.0021) –
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Conclusion

This study presents a methodological framework for road geometry
estimation.

The proposed LMM approach, including newly developed trail compression
and chopping mechanisms, facilitates accurate estimation for the shape of
the road.

The proposed methodology is applicable to vehicle following applications or
to fuse with other sources such as vision lane markings to have a more
accurate road shape estimation.

The empirical results demonstrate that our proposed method can work
reasonably well to estimate the highway road shape.

The proposed trail compression and chopping mechanisms can greatly
reduce the trail sample size as well as the modeling time of the LMM
method.
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