Matrix Lie Theory for the Roboticist

Yi-Chen Zhang

Lead Engineer, Autonomous and Al Isuzu Technical Center of America

February 27th, 2025

<ロト <回ト <注ト <注ト = 注

Isuzu Technical Center of America, Plymouth, Michigan October 24th, 2023

イロト イロト イヨト イヨト

2

Outline

Presentation: Some examples

Overview of Lie theory

- Lie group definition: Group, manifold, and action
- The tangent space: Lie algebra and Cartesian

Operators in the Lie theory

- The exponential and logarithmic map
- Plus and minus operators
- The adjoint matrix

4 Calculus and probability on Lie Groups

- Calculus and Jacobians
- Differentiation rules on Lie groups
- Perturbations on Lie groups and covariance matrices
- Integration on Lie groups

5 Applications: Localization

6 Conclusions and problems

Outline

Presentation: Some examples

Overview of Lie theory

- Lie group definition: Group, manifold, and action
- The tangent space: Lie algebra and Cartesian

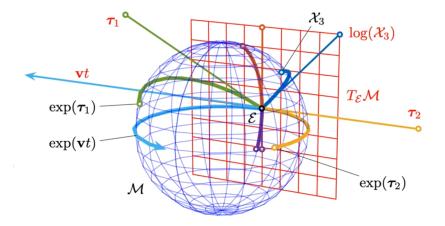
Operators in the Lie theory

- The exponential and logarithmic map
- Plus and minus operators
- The adjoint matrix

4 Calculus and probability on Lie Groups

- Calculus and Jacobians
- Differentiation rules on Lie groups
- Perturbations on Lie groups and covariance matrices
- Integration on Lie groups
- 5 Applications: Localization
- 6 Conclusions and problems

Some examples

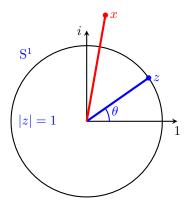


Courtesy by Solà, J., Dery, J., and Atchuthan, D. (2021). A micro Lie theroy for state estimation in robotics.

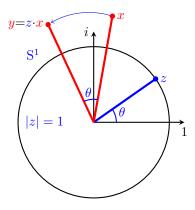
イロト イボト イヨト イヨト

Э

A quick overview of know facts



A quick overview of know facts

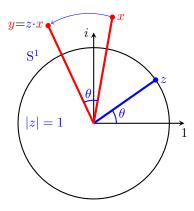


• Action: $y = z \cdot x$ rotates x• perator: Lie group!

- Constraint: $z^* \cdot z = 1$
- Topology: unit circle S¹
- Elements: $z = \cos \theta + i \sin \theta$

- Inverse: z^*
- Composition: $z_1 \cdot z_2$

A quick overview of know facts

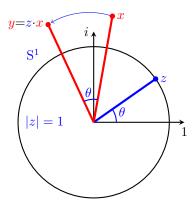


• Action: $y = z \cdot x$ rotates xoperator: Lie group!

- Constraint: $z^* \cdot z = 1$
- Topology: unit circle S¹
- Elements: $z = \cos \theta + i \sin \theta$

- Inverse: z^*
- Composition: $z_1 \cdot z_2$

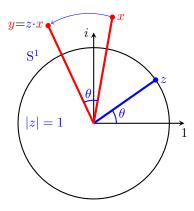
A quick overview of know facts



• Action: $y = z \cdot x$ rotates xoperator: Lie group!

- Constraint: $z^* \cdot z = 1$
- Topology: unit circle S¹
- Elements: $z = \cos \theta + i \sin \theta$
- Inverse: z*
- Composition: $z_1 \cdot z_2$

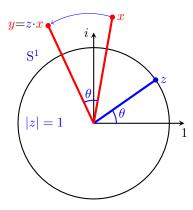
A quick overview of know facts



• Action: $y = z \cdot x$ rotates xoperator: Lie group!

- Constraint: $z^* \cdot z = 1$
- Topology: unit circle S¹
- Elements: $z = \cos \theta + i \sin \theta$
- Inverse: z*
- Composition: $z_1 \cdot z_2$

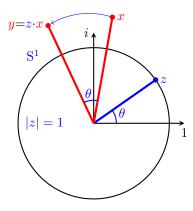
A quick overview of know facts



• Action: $y = z \cdot x$ rotates xoperator: Lie group!

- Constraint: $z^* \cdot z = 1$
- Topology: unit circle S¹
- Elements: $z = \cos \theta + i \sin \theta$
- Inverse: z*
- Composition: $z_1 \cdot z_2$

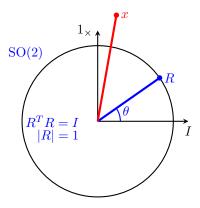
A quick overview of know facts



• Action: $y = z \cdot x$ rotates xoperator: Lie group!

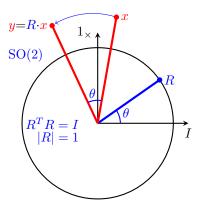
- Constraint: $z^* \cdot z = 1$
- Topology: unit circle S¹
- Elements: $z = \cos \theta + i \sin \theta$
- Inverse: z*
- Composition: $z_1 \cdot z_2$

A quick overview of know facts



臣

A quick overview of know facts

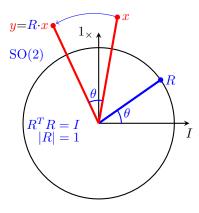


- Action: $y = R \cdot x$ rotates xoperator: Lie group!
- Constraint: $R^T \cdot R = I$
- Topology: "circle" SO(2)
- Elements: $R = I \cos \theta + 1_{\times} \sin \theta$
- Inverse: R^T
- Composition: $R_1 \cdot R_2$

 $\mathbf{I}_{\times} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

(日)

A quick overview of know facts

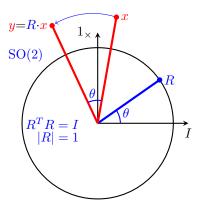


- Action: $y = R \cdot x$ rotates xoperator: Lie group!
- Constraint: $R^T \cdot R = I$
- Topology: "circle" SO(2)
- Elements: $R = I \cos \theta + 1_{\times} \sin \theta$
- Inverse: R^T
- Composition: $R_1 \cdot R_2$

 $\mathbf{I}_{\times} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

< 口 > < 同 >

A quick overview of know facts

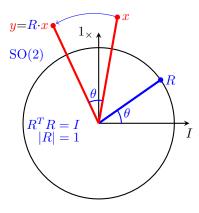


• Action: $y = R \cdot x$ rotates xoperator: Lie group!

- Constraint: $R^T \cdot R = I$
- Topology: "circle" SO(2)
- Elements: $R = I \cos \theta + 1_{\times} \sin \theta$
- Inverse: R^T
- Composition: $R_1 \cdot R_2$

 $\mathbf{l}_{\times} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

A quick overview of know facts



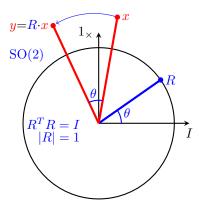
• Action: $y = R \cdot x$ rotates xoperator: Lie group! • Constraint: $R^T \cdot R = I$

- Topology: "circle" SO(2)
- Elements: $R = I \cos \theta + 1_{\times} \sin \theta$
- Inverse: R^{T}

• Composition: $R_1\cdot R_2$

 $1_{\times} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

A quick overview of know facts



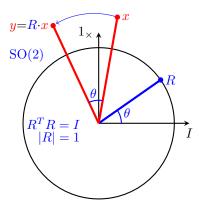
• Action: $y = R \cdot x$ rotates xoperator: Lie group!

- Constraint: $R^T \cdot R = I$
- Topology: "circle" SO(2)
- Elements: $R = I \cos \theta + 1_{\times} \sin \theta$
- Inverse: R^T

• Composition: $R_1 \cdot R_2$

 $1_{\times} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

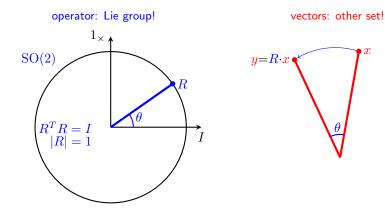
A quick overview of know facts



• Action: $y = R \cdot x$ rotates xoperator: Lie group!

- Constraint: $R^T \cdot R = I$
- Topology: "circle" SO(2)
- Elements: $R = I \cos \theta + 1_{\times} \sin \theta$
- Inverse: R^T
- Composition: $R_1 \cdot R_2$

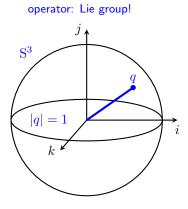
$$1_{\times} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$



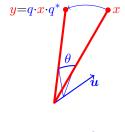
臣

S^3 : The unit quaternions

The 3-sphere in \mathbb{R}^4



 $q = \cos(\theta/2) + \boldsymbol{u}\sin(\theta/2)$



 $\boldsymbol{u} = i\boldsymbol{u}_x + j\boldsymbol{u}_y + k\boldsymbol{u}_z$

< □ > < 同 >

Э

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y = y_{b_0}$$

$$y_{b_0}$$

Y.-C. Zhang

x

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

Y.-C. Zhang

1

 x_{\uparrow}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y = y_{w_0}$$

$$y = y_{w_0}$$

Y.-C. Zhang

 x_{\uparrow}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y = y_{w_0}$$

$$y_{w_0}$$

 x_{\cdot}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

= 4

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y \qquad y \qquad y \qquad b_{o}$$

x

t = 5

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y \qquad y \qquad b_0$$

$$y \qquad y \qquad b_0$$

t = 6

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

p

臣

20 / 251

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

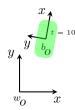


Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



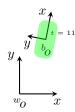
p

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

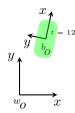


Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

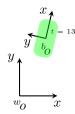


Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

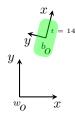


Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



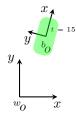
Э

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



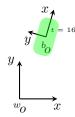
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



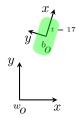
Э

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



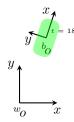
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



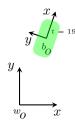
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



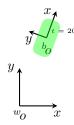
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



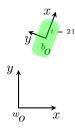
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



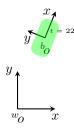
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



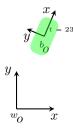
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



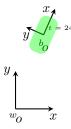
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



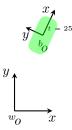
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



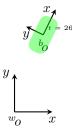
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



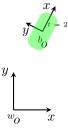
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



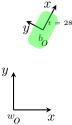
臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$



臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

y

 w_{O}

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

y

 w_{O}

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

 \hat{x}

y

 w_{O}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

 \hat{x}

y

 w_{O}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

 \hat{x}

y

 w_{O}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

 \hat{x}

y

 w_{O}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

 \hat{x}

y

 w_{O}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

 \hat{x}

y

 w_{O}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

 \hat{x}

y

 w_{O}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

y

 w_{O}

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

y

 w_{O}

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

y

 w_{O}

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

y

 w_{O}

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

y

 w_{O}

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

43

y

 w_{O}

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y$$
$$p = p_{wb}$$

 \hat{x}

 w_{O}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

45

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$
$$p = p_{wb}$$

y

 w_{O}

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y$$
$$p = p_{wb}$$

 \hat{x}

 w_{O}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{\substack{p = p_{wb} \\ w_0}}$$

49

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

56 V

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{\substack{p = p_{wb}}} \qquad \qquad y \bigwedge_{\substack{w_Q}}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_0}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

 \dot{x}

臣

∃ ► < ∃ ►</p>

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

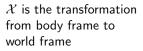
 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$



$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

 \dot{x}

臣

イロト イボト イヨト イヨト

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

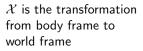
$$y$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$



 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

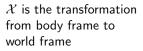
$$y$$

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$



$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

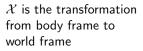
 \hat{x}

臣

▶ < ∃ ▶</p>

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$



 \hat{x}

臣

→ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

x

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

臣

▶ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

臣

▶ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb}$$

$$p = p_{wb}$$

$$y$$

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \dot{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

< □ > < 同 >

 \hat{x}

臣

▶ < ∃ ▶</p>

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \hat{x}

臣

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

 \hat{x}

臣

▶ < ∃ ▶</p>

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

< □ > < 同 >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

 \dot{x}

臣

▶ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

 \dot{x}

臣

▶ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

 \dot{x}

臣

▶ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

 \dot{x}

臣

▶ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

 \dot{x}

臣

▶ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

 \dot{x}

臣

▶ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 $\ensuremath{\mathcal{X}}$ is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

▶ < ∃ >

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

 \dot{x}

臣

Pose of a robot in the plane: SE(2)

$$\mathcal{X}(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \mathcal{X} is the transformation from body frame to world frame

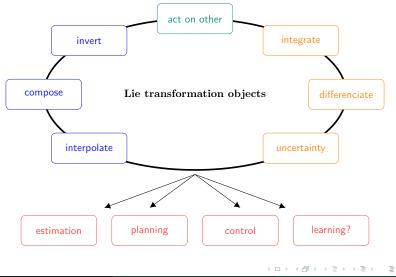
$$R = R_{wb} \qquad \qquad y \bigwedge_{w_Q}$$

 \dot{x}

臣

Why Lie groups?

Abstract and principled way to do all this:



Outline

Presentation: Some examples

Overview of Lie theory

- Lie group definition: Group, manifold, and action
- The tangent space: Lie algebra and Cartesian

Operators in the Lie theory

- The exponential and logarithmic map
- Plus and minus operators
- The adjoint matrix

4 Calculus and probability on Lie Groups

- Calculus and Jacobians
- Differentiation rules on Lie groups
- Perturbations on Lie groups and covariance matrices
- Integration on Lie groups
- 5 Applications: Localization
- 6 Conclusions and problems

- Group: set \mathcal{G} of elements $\{\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \ldots\}$ with an operation ' \circ ' such that:
 - Composition stays in the group: $\mathcal{X} \circ \mathcal{Y} \in \mathcal{G}$
 - Identity element is in the group: $\mathcal{X} \circ \mathcal{E} = \mathcal{E} \circ \mathcal{X} = \mathcal{X}$
 - Inverse element is in the group: $\mathcal{X}^{-1} \circ \mathcal{X} = \mathcal{X} \circ \mathcal{X}^{-1} = \mathcal{E}$
 - Operation is associative: $(\mathcal{X} \circ \mathcal{Y}) \circ \mathcal{Z} = \mathcal{X} \circ (\mathcal{Y} \circ \mathcal{Z})$

• In many groups of interest, the operation 'o' is non-commutative!

- Group: set \mathcal{G} of elements $\{\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \ldots\}$ with an operation ' \circ ' such that:
 - Composition stays in the group: $\mathcal{X} \circ \mathcal{Y} \in \mathcal{G}$
 - Identity element is in the group: $X \circ \mathcal{E} = \mathcal{E} \circ X = X$
 - Inverse element is in the group: $\mathcal{X}^{-1} \circ \mathcal{X} = \mathcal{X} \circ \mathcal{X}^{-1} = \mathcal{E}$
 - Operation is associative: $(\mathcal{X} \circ \mathcal{Y}) \circ \mathcal{Z} = \mathcal{X} \circ (\mathcal{Y} \circ \mathcal{Z})$

In many groups of interest, the operation 'o' is non-commutative!

- Group: set \mathcal{G} of elements $\{\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \ldots\}$ with an operation ' \circ ' such that:
 - \bullet Composition stays in the group: $\mathcal{X} \circ \mathcal{Y} \in \mathcal{G}$
 - Identity element is in the group: $\mathcal{X} \circ \mathcal{E} = \mathcal{E} \circ \mathcal{X} = \mathcal{X}$
 - Inverse element is in the group: $\mathcal{X}^{-1} \circ \mathcal{X} = \mathcal{X} \circ \mathcal{X}^{-1} = \mathcal{E}$
 - Operation is associative: $(\mathcal{X} \circ \mathcal{Y}) \circ \mathcal{Z} = \mathcal{X} \circ (\mathcal{Y} \circ \mathcal{Z})$

• In many groups of interest, the operation 'o' is non-commutative!

- Group: set \mathcal{G} of elements $\{\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \ldots\}$ with an operation ' \circ ' such that:
 - \bullet Composition stays in the group: $\mathcal{X} \circ \mathcal{Y} \in \mathcal{G}$
 - Identity element is in the group: $\mathcal{X} \circ \mathcal{E} = \mathcal{E} \circ \mathcal{X} = \mathcal{X}$
 - Inverse element is in the group: $\mathcal{X}^{-1} \circ \mathcal{X} = \mathcal{X} \circ \mathcal{X}^{-1} = \mathcal{E}$
 - Operation is associative: $(\mathcal{X} \circ \mathcal{Y}) \circ \mathcal{Z} = \mathcal{X} \circ (\mathcal{Y} \circ \mathcal{Z})$

• In many groups of interest, the operation 'o' is non-commutative!

- Group: set \mathcal{G} of elements $\{\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \ldots\}$ with an operation ' \circ ' such that:
 - \bullet Composition stays in the group: $\mathcal{X} \circ \mathcal{Y} \in \mathcal{G}$
 - Identity element is in the group: $\mathcal{X} \circ \mathcal{E} = \mathcal{E} \circ \mathcal{X} = \mathcal{X}$
 - Inverse element is in the group: $\mathcal{X}^{-1} \circ \mathcal{X} = \mathcal{X} \circ \mathcal{X}^{-1} = \mathcal{E}$
 - Operation is associative: $(\mathcal{X} \circ \mathcal{Y}) \circ \mathcal{Z} = \mathcal{X} \circ (\mathcal{Y} \circ \mathcal{Z})$

• In many groups of interest, the operation 'o' is non-commutative!

- Group: set \mathcal{G} of elements $\{\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \ldots\}$ with an operation ' \circ ' such that:
 - Composition stays in the group: $\mathcal{X} \circ \mathcal{Y} \in \mathcal{G}$
 - Identity element is in the group: $\mathcal{X} \circ \mathcal{E} = \mathcal{E} \circ \mathcal{X} = \mathcal{X}$
 - Inverse element is in the group: $\mathcal{X}^{-1} \circ \mathcal{X} = \mathcal{X} \circ \mathcal{X}^{-1} = \mathcal{E}$
 - Operation is associative: $(\mathcal{X} \circ \mathcal{Y}) \circ \mathcal{Z} = \mathcal{X} \circ (\mathcal{Y} \circ \mathcal{Z})$
- In many groups of interest, the operation 'o' is non-commutative!

The Lie group

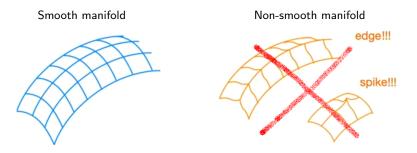
Definition: A group that is also a smooth manifold

Smooth manifold Non-smooth manifold edge!!! spike!!!

Э

The Lie group

Definition: A group that is also a smooth manifold



The other definition: A Lie group is a smooth manifold whose elements satisfy the group axioms.

Definition

• A group can act on another set V to transform its elements

• Given \mathcal{X}, \mathcal{Y} in \mathcal{G} and v in V, the action ' \cdot ' is such that:

• Identity is the null action: $\mathcal{E} \cdot v = v$

• It is compatible with composition: $(\mathcal{X} \circ \mathcal{Y}) \cdot v = \mathcal{X} \cdot (\mathcal{Y} \cdot v)$

Lie groups were formely known as "continuous transformation groups".

Definition

- A group can act on another set V to transform its elements
- Given \mathcal{X}, \mathcal{Y} in \mathcal{G} and v in V, the action '·' is such that:
 - Identity is the null action: $\mathcal{E} \cdot v = v$
 - It is compatible with composition: $(\mathcal{X} \circ \mathcal{Y}) \cdot v = \mathcal{X} \cdot (\mathcal{Y} \cdot v)$

Lie groups were formely known as "continuous transformation groups".

Definition

- A group can act on another set V to transform its elements
- Given \mathcal{X}, \mathcal{Y} in \mathcal{G} and v in V, the action '·' is such that:
 - Identity is the null action: $\mathcal{E} \cdot v = v$
 - It is compatible with composition: $(\mathcal{X} \circ \mathcal{Y}) \cdot v = \mathcal{X} \cdot (\mathcal{Y} \cdot v)$

• Lie groups were formely known as "continuous transformation groups".

Definition

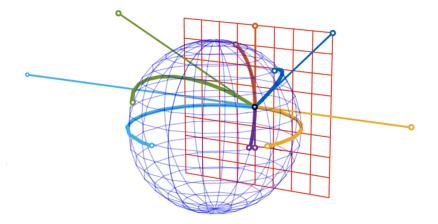
- A group can act on another set V to transform its elements
- Given \mathcal{X}, \mathcal{Y} in \mathcal{G} and v in V, the action '·' is such that:
 - Identity is the null action: $\mathcal{E} \cdot v = v$
 - It is compatible with composition: $(\mathcal{X} \circ \mathcal{Y}) \cdot v = \mathcal{X} \cdot (\mathcal{Y} \cdot v)$

• Lie groups were formely known as "continuous transformation groups".

Group action

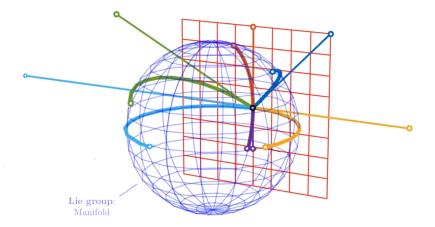
Definition

- A group can act on another set V to transform its elements
- Given \mathcal{X}, \mathcal{Y} in \mathcal{G} and v in V, the action '·' is such that:
 - Identity is the null action: $\mathcal{E} \cdot v = v$
 - It is compatible with composition: $(\mathcal{X} \circ \mathcal{Y}) \cdot v = \mathcal{X} \cdot (\mathcal{Y} \cdot v)$
- Lie groups were formely known as "continuous transformation groups".



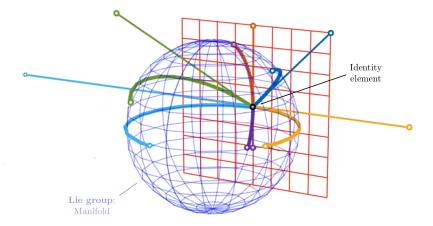
æ

イロト イロト イヨト イヨト



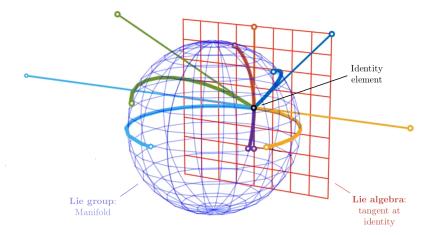
æ

イロト イヨト イヨト イヨト



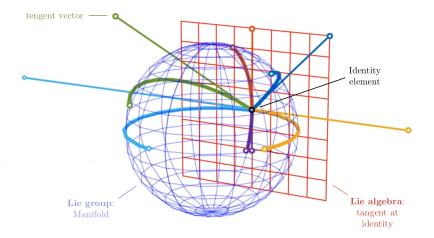
æ

イロト イロト イヨト イヨト

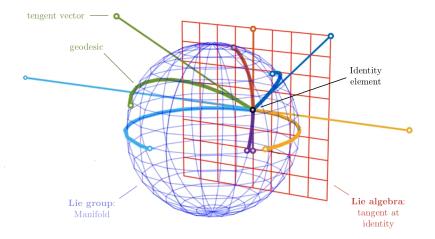


2

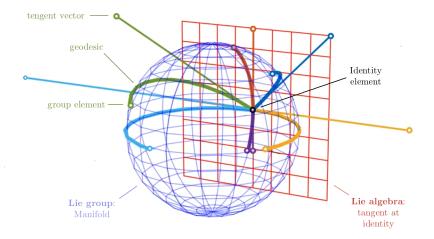
イロト イヨト イヨト イヨト



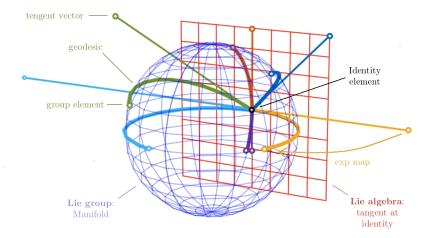
2



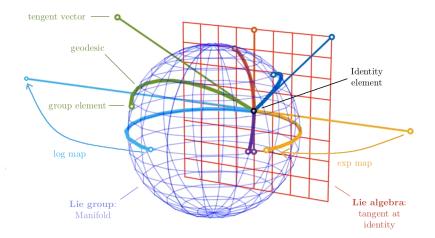
2



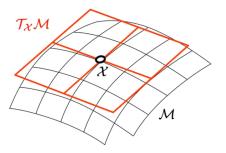
2



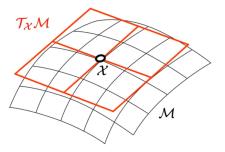
2



2

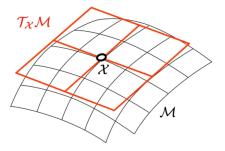


- The tangent space at each point is unique
- The tangent space is a vector space: we can do calculus!
- The dimension of the tangent space is the number of degrees of freedom of the manifold
- The tangent space at the identity is called the "Lie Algebra"



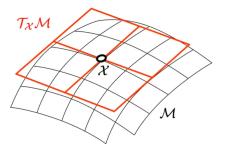
- The tangent space at each point is unique
- The tangent space is a vector space: we can do calculus!
- The dimension of the tangent space is the number of degrees of freedom of the manifold
- The tangent space at the identity is called the "Lie Algebra"

< □ > < 同 >



- The tangent space at each point is unique
- The tangent space is a vector space: we can do calculus!
- The dimension of the tangent space is the number of degrees of freedom of the manifold
- The tangent space at the identity is called the "Lie Algebra"

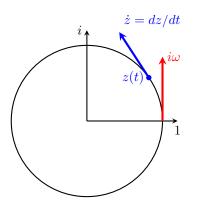
I > <
 I >



- The tangent space at each point is unique
- The tangent space is a vector space: we can do calculus!
- The dimension of the tangent space is the number of degrees of freedom of the manifold
- The tangent space at the identity is called the "Lie Algebra"

Structure of the tangent space:

Consider the velocity of a point rotating on the unit circle.



Differentiate $z^* \cdot z = 1$ w.r.t. time: $\dot{z}^* z + z^* \dot{z} = 0$ $\Rightarrow z^* \dot{z} = -(z^* \dot{z})^*$ $\Rightarrow z^* \dot{z} = i\omega \in i\mathbb{R}$

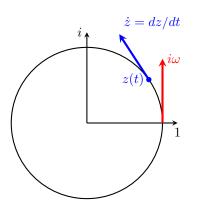
- ullet Lie Algebra $\mathfrak{s}^1\colon \omega^\wedge = i\cdot \omega$ in $\mathbb R$
- Cartesian: ω in \mathbb{R}
- Isomorphism: $\mathfrak{s}^1 \simeq \mathbb{R}$

• Hat:
$$\omega^{\wedge} = i \cdot \omega$$

• Vee:
$$\omega = -i \cdot \omega^{\vee}$$

Structure of the tangent space:

Consider the velocity of a point rotating on the unit circle.



$$\dot{z}^* z + z^* \dot{z} = 0$$

$$\Rightarrow z^* \dot{z} = -(z^* \dot{z})^*$$

$$\Rightarrow z^* \dot{z} = i\omega \in i\mathbb{R}$$

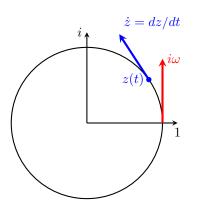
- Lie Algebra $\mathfrak{s}^1\colon \omega^\wedge = i\cdot \omega$ in $\mathbb R$
- Cartesian: ω in \mathbb{R}
- Isomorphism: $\mathfrak{s}^1 \simeq \mathbb{R}$

• Hat:
$$\omega^{\wedge} = i \cdot \omega$$

• Vee:
$$\omega = -i \cdot \omega^{\vee}$$

Structure of the tangent space:

Consider the velocity of a point rotating on the unit circle.



• Differentiate $z^* \cdot z = 1$ w.r.t. time:

 $\dot{z}^* z + z^* \dot{z} = 0$ $\Rightarrow z^* \dot{z} = -(z^* \dot{z})^*$ $\Rightarrow z^* \dot{z} = i\omega \in i\mathbb{R}$

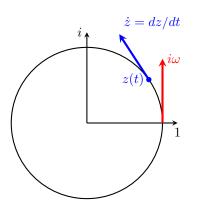
- Lie Algebra $\mathfrak{s}^1\colon \omega^\wedge = i\cdot \omega$ in $\mathbb R$
- Cartesian: ω in \mathbb{R}
- Isomorphism: $\mathfrak{s}^1 \simeq \mathbb{R}$

• Hat:
$$\omega^{\wedge} = i \cdot \omega$$

• Vee:
$$\omega = -i \cdot \omega^{\vee}$$

Structure of the tangent space:

Consider the velocity of a point rotating on the unit circle.



• Differentiate $z^* \cdot z = 1$ w.r.t. time:

$$\dot{z}^* z + z^* \dot{z} = 0$$

$$\Rightarrow z^* \dot{z} = -(z^* \dot{z})^*$$

$$\Rightarrow z^* \dot{z} = i\omega \in i\mathbb{R}$$

• Lie Algebra
$$\mathfrak{s}^1\colon \omega^\wedge = i\cdot \omega$$
 in $\mathbb R$

• Cartesian: ω in \mathbb{R}

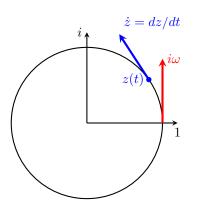
• Isomorphism:
$$\mathfrak{s}^1 \simeq \mathbb{R}$$

• Hat:
$$\omega^{\wedge} = i \cdot \omega$$

• Vee:
$$\omega = -i \cdot \omega^{\vee}$$

Structure of the tangent space:

Consider the velocity of a point rotating on the unit circle.



$$\dot{z}^* z + z^* \dot{z} = 0$$

$$\Rightarrow z^* \dot{z} = -(z^* \dot{z})^*$$

$$\Rightarrow z^* \dot{z} = i\omega \in i\mathbb{R}$$

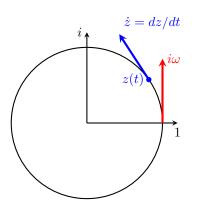
- Lie Algebra $\mathfrak{s}^1\colon \omega^{\,\wedge} = i\cdot\omega$ in $\mathbb R$
- Cartesian: ω in \mathbb{R}
- Isomorphism: $\mathfrak{s}^1 \simeq \mathbb{R}$

• Hat:
$$\omega^{\wedge} = i \cdot \omega$$

• Vee:
$$\omega = -i \cdot \omega^{\vee}$$

Structure of the tangent space:

Consider the velocity of a point rotating on the unit circle.



$$\dot{z}^* z + z^* \dot{z} = 0$$

$$\Rightarrow z^* \dot{z} = -(z^* \dot{z})^*$$

$$\Rightarrow z^* \dot{z} = i\omega \in i\mathbb{R}$$

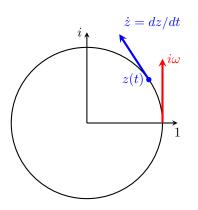
- Lie Algebra \mathfrak{s}^1 : $\omega^{\wedge} = i \cdot \omega$ in $\mathbb R$
- Cartesian: ω in \mathbb{R}
- Isomorphism: $\mathfrak{s}^1 \simeq \mathbb{R}$

• Hat:
$$\omega^{\wedge} = i \cdot \omega$$

• Vee:
$$\omega = -i \cdot \omega^{\vee}$$

Structure of the tangent space:

Consider the velocity of a point rotating on the unit circle.



$$\dot{z}^* z + z^* \dot{z} = 0$$

$$\Rightarrow z^* \dot{z} = -(z^* \dot{z})^*$$

$$\Rightarrow z^* \dot{z} = i\omega \in i\mathbb{R}$$

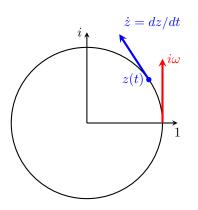
- Lie Algebra \mathfrak{s}^1 : $\omega^{\wedge} = i \cdot \omega$ in $\mathbb R$
- \bullet Cartesian: ω in $\mathbb R$
- Isomorphism: $\mathfrak{s}^1 \simeq \mathbb{R}$

• Hat:
$$\omega^{\wedge} = i \cdot \omega$$

• Vee:
$$\omega = -i \cdot \omega^{\vee}$$

Structure of the tangent space:

Consider the velocity of a point rotating on the unit circle.



• Differentiate $z^* \cdot z = 1$ w.r.t. time:

$$\dot{z}^* z + z^* \dot{z} = 0$$

$$\Rightarrow z^* \dot{z} = -(z^* \dot{z})^*$$

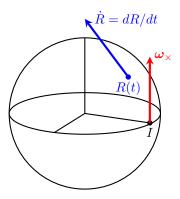
$$\Rightarrow z^* \dot{z} = i\omega \in i\mathbb{R}$$

- Lie Algebra \mathfrak{s}^1 : $\omega^{\wedge} = i \cdot \omega$ in $\mathbb R$
- \bullet Cartesian: ω in $\mathbb R$
- \bullet Isomorphism: $\mathfrak{s}^1\simeq \mathbb{R}$

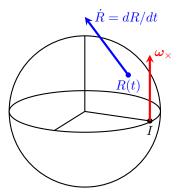
• Hat:
$$\omega^{\wedge} = i \cdot \omega$$

• Vee:
$$\omega = -i \cdot \omega^{\vee}$$

Structure of the tangent space: Consider the velocity of a point rotating on the 3-sphere.



Structure of the tangent space: Consider the velocity of a point rotating on the 3-sphere.



• Differentiate $R^T \cdot R = I$ w.r.t. time:

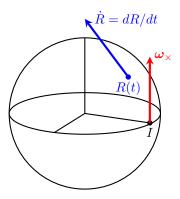
$$\dot{R}^T R + R^T \dot{R} = 0$$

$$\Rightarrow R^T \dot{R} = -(R^T \dot{R})^T$$

$$\Rightarrow R^T \dot{R} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3)$$

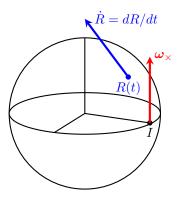
$$\dot{R} = \boldsymbol{\omega}_{\times} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3)$$

Structure of the tangent space: Consider the velocity of a point rotating on the 3-sphere.



• Differentiate $R^T \cdot R = I$ w.r.t. time: $\dot{R}^T R + R^T \dot{R} = 0$

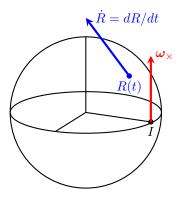
Structure of the tangent space: Consider the velocity of a point rotating on the 3-sphere.



• Differentiate $R^T \cdot R = I$ w.r.t. time: $\dot{R}^T R + R^T \dot{R} = 0$ $\Rightarrow R^T \dot{R} = -(R^T \dot{R})^T$ $\Rightarrow R^T \dot{R} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}$

$$\dot{R} = \boldsymbol{\omega}_{\times} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3)$$

Structure of the tangent space: Consider the velocity of a point rotating on the 3-sphere.



• Differentiate $R^T \cdot R = I$ w.r.t. time:

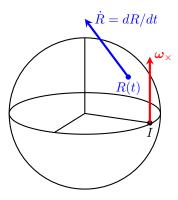
$$\dot{R}^T R + R^T \dot{R} = 0$$

$$\Rightarrow R^T \dot{R} = -(R^T \dot{R})^T$$

$$\Rightarrow R^T \dot{R} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3)$$

$$\dot{R} = \boldsymbol{\omega}_{\times} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3)$$

Structure of the tangent space: Consider the velocity of a point rotating on the 3-sphere.



• Differentiate $R^T \cdot R = I$ w.r.t. time:

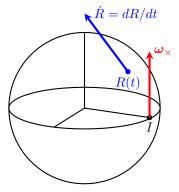
$$\dot{R}^T R + R^T \dot{R} = 0$$

$$\Rightarrow R^T \dot{R} = -(R^T \dot{R})^T$$

$$\Rightarrow R^T \dot{R} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3)$$

$$\dot{R} = \boldsymbol{\omega}_{\times} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3)$$

Lie algebra v.s Cartesian representation



Lie Algebra so(3):

$$\begin{split} \omega_{\times} &= \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3) \\ &= \omega_x \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} + \omega_y \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} + \omega_z \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{split}$$

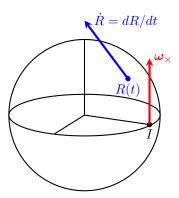
• Cartesian \mathbb{R}^3 :

$$\boldsymbol{\omega} = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T \in \mathbb{R}^3$$
$$= \omega_x \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T + \omega_y \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T + \omega_z \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$$

イロト イボト イヨト イヨト

Isomorphism: so(3) ≃ ℝ³
 Hat: ω[∧] = ω_×
 Vee: ω = ω[×]

Lie algebra v.s Cartesian representation



• Lie Algebra $\mathfrak{so}(3)$:

$$\begin{split} \boldsymbol{\omega}_{\times} &= \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3) \\ &= \omega_x \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} + \omega_y \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} + \omega_z \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{split}$$

• Cartesian \mathbb{R}^3 :

$$\boldsymbol{\omega} = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T \in \mathbb{R}^3$$
$$= \omega_x \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T + \omega_y \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T + \omega_z \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$$

イロト イボト イヨト イヨト

Isomorphism: so(3) ≃ ℝ³
Hat: ω[∧] = ω_×
Nos: u = u[×]

Lie algebra v.s Cartesian representation

 $\dot{R} = dR/dt$

• Lie Algebra $\mathfrak{so}(3)$:

$$\begin{split} \boldsymbol{\omega}_{\times} &= \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3) \\ &= \omega_x \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} + \omega_y \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} + \omega_z \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{split}$$

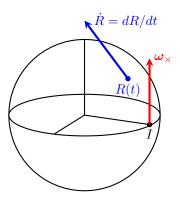
• Cartesian \mathbb{R}^3 :

$$\boldsymbol{\omega} = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T \in \mathbb{R}^3$$
$$= \omega_x \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T + \omega_y \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T + \omega_z \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$$

イロト イボト イヨト イヨト

• Isomorphism: $\mathfrak{so}(3) \simeq \mathbb{R}^3$ • Hat: $\omega^* = \omega_{\times}$ • Vee: $\omega = \omega_{\times}^{\times}$

Lie algebra v.s Cartesian representation



• Lie Algebra $\mathfrak{so}(3)$:

$$\begin{split} \boldsymbol{\omega}_{\times} &= \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \in \mathfrak{so}(3) \\ &= \omega_x \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} + \omega_y \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} + \omega_z \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{split}$$

• Cartesian \mathbb{R}^3 :

$$\boldsymbol{\omega} = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T \in \mathbb{R}^3$$
$$= \omega_x \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T + \omega_y \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T + \omega_z \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$$

< □ > < 同 >

• Isomorphism: $\mathfrak{so}(3) \simeq \mathbb{R}^3$

• Hat:
$$\omega^{\wedge} = \omega_{\times}$$

• Vee: $\omega = \omega_{\times}^{\vee}$

Outline

Presentation: Some examples

2 Overview of Lie theory

- Lie group definition: Group, manifold, and action
- The tangent space: Lie algebra and Cartesian

Operators in the Lie theory

- The exponential and logarithmic map
- Plus and minus operators
- The adjoint matrix

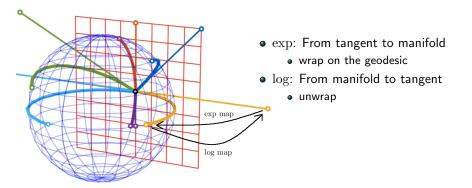
4 Calculus and probability on Lie Groups

- Calculus and Jacobians
- Differentiation rules on Lie groups
- Perturbations on Lie groups and covariance matrices
- Integration on Lie groups

5 Applications: Localization

6 Conclusions and problems

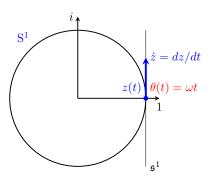
The exponential and logarithmic map



< □ > < 同 >

The exponential and logarithmic map

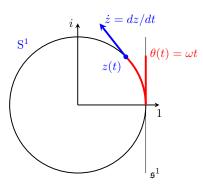
Example: S¹



臣

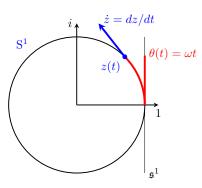
The exponential and logarithmic map

Example: S¹



 $=\cos\theta + i\sin\theta$

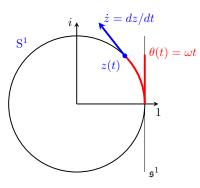
Example: S¹



• Write ODE and integrate $z^*\dot{z} = i\omega \implies \dot{z} = zi\omega$

I > <
 I >

Example: S¹

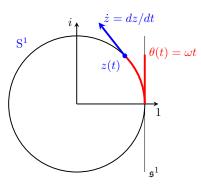


• Write ODE and integrate $z^*\dot{z} = i\omega \implies \dot{z} = zi\omega$ $z(t) = z_0 \exp(i\omega t)$

 $=\cos\theta + i\sin\theta$

215 / 251

Example: S¹



• Write ODE and integrate

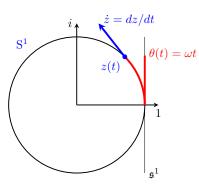
 $z^*\dot{z} = i\omega \implies \dot{z} = zi\omega$ $z(t) = z_0 \exp(i\omega t)$ $\Rightarrow \dot{z} = z_0 \exp(i\omega t)i\omega = zi\omega$ If $z_0 = z(0) = 1$ and $i\omega t = i\theta$ $z(t) = \exp(i\omega t) = \exp(i\theta)$ Taylor expansion of $\exp(i\theta)$: $\exp(i\theta) = 1 + i\theta + (i\theta)^2/2 + (i\theta)^3/3! + \cdots$

$$= 1 + i\theta - \theta^2/2 - i\theta^3/3! + \theta^*/4! \cdots$$
$$= (1 - \theta^2/2 + \cdots) + i(\theta - \theta^3/3! + \cdots)$$
$$= \cos^2 \theta + i\sin^2 \theta$$

 $=\cos\theta + i\sin\theta$

215 / 251

Example: S¹



• Write ODE and integrate

$$\begin{aligned} z^*\dot{z} &= i\omega \implies \dot{z} = zi\omega \\ z(t) &= z_0 \exp(i\omega t) \\ \Rightarrow \dot{z} &= z_0 \exp(i\omega t)i\omega = zi\omega \end{aligned}$$

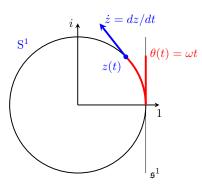
• If $z_0 &= z(0) = 1$ and $i\omega t = i\theta$

$$z(t) = \exp(i\omega t) = \exp(i\theta)$$

• Taylor expansion of $\exp(i\theta)$:

$$\exp(i\theta) = 1 + i\theta + (i\theta)^2/2 + (i\theta)^3/3! + \cdots$$
$$= 1 + i\theta - \theta^2/2 - i\theta^3/3! + \theta^4/4! \cdots$$
$$= (1 - \theta^2/2 + \cdots) + i(\theta - \theta^3/3! + \cdots$$
$$= \cos\theta + i\sin\theta$$

Example: S¹



• Write ODE and integrate

$$z^* \dot{z} = i\omega \implies \dot{z} = zi\omega$$
$$z(t) = z_0 \exp(i\omega t)$$
$$\Rightarrow \dot{z} = z_0 \exp(i\omega t)i\omega = zi\omega$$

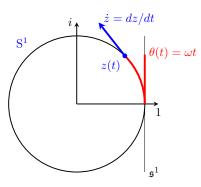
• If
$$z_0 = z(0) = 1$$
 and $i\omega t = i\theta$

$$z(t) = \exp(i\omega t) = \exp(i\theta)$$

• Taylor expansion of $\exp(i\theta)$:

 $\exp(i\theta) = 1 + i\theta + (i\theta)^2/2 + (i\theta)^3/3! + \cdots$ $= 1 + i\theta - \theta^2/2 - i\theta^3/3! + \theta^4/4! \cdots$ $= (1 - \theta^2/2 + \cdots) + i(\theta - \theta^3/3! + \cdots$ $= \cos\theta + i\sin\theta$

Example: S¹



• Write ODE and integrate

$$z^* \dot{z} = i\omega \implies \dot{z} = zi\omega$$
$$z(t) = z_0 \exp(i\omega t)$$
$$\Rightarrow \dot{z} = z_0 \exp(i\omega t)i\omega = zi\omega$$

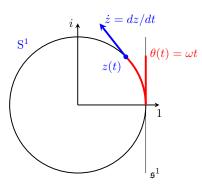
• If
$$z_0 = z(0) = 1$$
 and $i\omega t = i\theta$

$$z(t) = \exp(i\omega t) = \exp(i\theta)$$

• Taylor expansion of $\exp(i\theta)$:

$$\exp(i\theta) = 1 + i\theta + (i\theta)^2/2 + (i\theta)^3/3! + \cdots$$
$$= 1 + i\theta - \theta^2/2 - i\theta^3/3! + \theta^4/4! \cdots$$
$$= (1 - \theta^2/2 + \cdots) + i(\theta - \theta^3/3! + \cdots$$
$$= \cos\theta + i\sin\theta$$

Example: S¹



• Write ODE and integrate

$$z^* \dot{z} = i\omega \implies \dot{z} = zi\omega$$
$$z(t) = z_0 \exp(i\omega t)$$
$$\implies \dot{z} = z_0 \exp(i\omega t)i\omega = zi\omega$$

• If
$$z_0 = z(0) = 1$$
 and $i\omega t = i\theta$

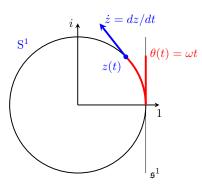
$$z(t) = \exp(i\omega t) = \exp(i\theta)$$

• Taylor expansion of $\exp(i\theta)$:

$$\exp(i\theta) = 1 + i\theta + (i\theta)^2/2 + (i\theta)^3/3! + \cdots$$
$$= 1 + i\theta - \theta^2/2 - i\theta^3/3! + \theta^4/4! \cdots$$
$$= (1 - \theta^2/2 + \cdots) + i(\theta - \theta^3/3! + \cdots)$$
$$= \cos\theta + i\sin\theta$$

215 / 251

Example: S¹



• Write ODE and integrate

$$z^* \dot{z} = i\omega \implies \dot{z} = zi\omega$$
$$z(t) = z_0 \exp(i\omega t)$$
$$\implies \dot{z} = z_0 \exp(i\omega t)i\omega = zi\omega$$

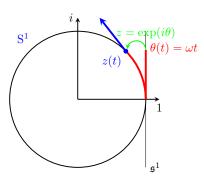
• If
$$z_0 = z(0) = 1$$
 and $i\omega t = i\theta$

$$z(t) = \exp(i\omega t) = \exp(i\theta)$$

• Taylor expansion of $\exp(i\theta)$:

$$\exp(i\theta) = 1 + i\theta + (i\theta)^2/2 + (i\theta)^3/3! + \cdots$$
$$= 1 + i\theta - \theta^2/2 - i\theta^3/3! + \theta^4/4! \cdots$$
$$= (1 - \theta^2/2 + \cdots) + i(\theta - \theta^3/3! + \cdots)$$
$$= \cos\theta + i\sin\theta$$

Example: S^1



• Write ODE and integrate

$$z^* \dot{z} = i\omega \implies \dot{z} = zi\omega$$
$$z(t) = z_0 \exp(i\omega t)$$
$$\implies \dot{z} = z_0 \exp(i\omega t)i\omega = zi\omega$$

• If
$$z_0 = z(0) = 1$$
 and $i\omega t = i\theta$

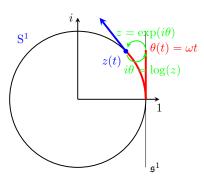
$$z(t) = \exp(i\omega t) = \exp(i\theta)$$

• Taylor expansion of $\exp(i\theta)$:

$$\exp(i\theta) = 1 + i\theta + (i\theta)^2/2 + (i\theta)^3/3! + \cdots$$
$$= 1 + i\theta - \theta^2/2 - i\theta^3/3! + \theta^4/4! \cdots$$
$$= (1 - \theta^2/2 + \cdots) + i(\theta - \theta^3/3! + \cdots)$$
$$= \cos\theta + i\sin\theta$$

t

Example: S^1



• Write ODE and integrate

$$z^* \dot{z} = i\omega \implies \dot{z} = zi\omega$$
$$z(t) = z_0 \exp(i\omega t)$$
$$\implies \dot{z} = z_0 \exp(i\omega t)i\omega = zi\omega$$

• If
$$z_0 = z(0) = 1$$
 and $i\omega t = i\theta$

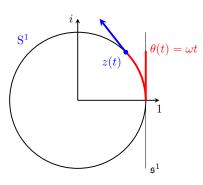
$$z(t) = \exp(i\omega t) = \exp(i\theta)$$

• Taylor expansion of $\exp(i\theta)$:

$$\exp(i\theta) = 1 + i\theta + (i\theta)^2/2 + (i\theta)^3/3! + \cdots$$
$$= 1 + i\theta - \theta^2/2 - i\theta^3/3! + \theta^4/4! \cdots$$
$$= (1 - \theta^2/2 + \cdots) + i(\theta - \theta^3/3! + \cdots)$$
$$= \cos\theta + i\sin\theta$$

217 / 251

Example: S^1



• Write ODE and integrate

$$z^* \dot{z} = i\omega \implies \dot{z} = zi\omega$$
$$z(t) = z_0 \exp(i\omega t)$$
$$\Rightarrow \dot{z} = z_0 \exp(i\omega t)i\omega = zi\omega$$

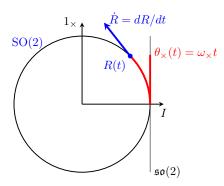
• If
$$z_0 = z(0) = 1$$
 and $i\omega t = i\theta$

$$z(t) = \exp(i\omega t) = \exp(i\theta)$$

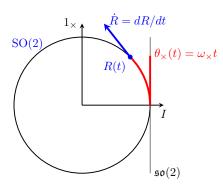
• Taylor expansion of $\exp(i\theta)$:

$$\exp(i\theta) = 1 + i\theta + (i\theta)^2/2 + (i\theta)^3/3! + \cdots$$
$$= 1 + i\theta - \theta^2/2 - i\theta^3/3! + \theta^4/4! \cdots$$
$$= (1 - \theta^2/2 + \cdots) + i(\theta - \theta^3/3! + \cdots)$$
$$= \cos\theta + i\sin\theta$$

Example: SO(2)



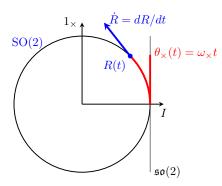
Example: SO(2)



• Write ODE and integrate $R^{T}\dot{R} = \omega_{\times} \implies \dot{R} = R \cdot \omega_{\times}$ $R(t) = R_{0} \exp(\omega_{\times} t)$ $\Rightarrow \dot{R} = R_{0} \exp(\omega_{\times} t) \cdot \omega_{\times} = R \cdot \omega_{\times}$ • If $R_{0} = R(0) = I$ and $\omega_{\times} t = \theta_{\times}$ $R(t) = \exp(\omega_{\times} t) = \exp(\theta_{\times})$ • Taylor expansion of $\exp(\theta_{\times})$: $\exp(\theta_{\times}) = I + \theta_{\times} + (\theta_{\times})^{2}/2 + (\theta_{\times})^{3}/31 + \theta_{\times}$

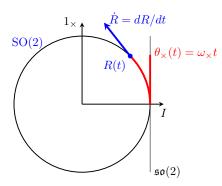
$$= I(1 - \theta^2/2 + \dots) + 1_{\times}(\theta - \theta^3/3! + \dots)$$
$$= I\cos\theta + 1_{\times}\sin\theta = \begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}$$

Example: SO(2)



• Write ODE and integrate $R^T \dot{R} = \omega_{\times} \quad \Rightarrow \quad \dot{R} = R \cdot \omega_{\times}$ $R(t) = R_0 \exp(\omega_{\times} t)$

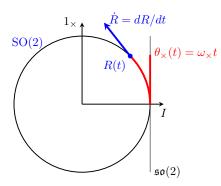
Example: SO(2)



• Write ODE and integrate $R^{T}\dot{R} = \omega_{\times} \implies \dot{R} = R \cdot \omega_{\times}$ $R(t) = R_{0} \exp(\omega_{\times} t)$ $\Rightarrow \dot{R} = R_{0} \exp(\omega_{\times} t) \cdot \omega_{\times} = R \cdot \omega_{\times}$ • If $R_{0} = R(0) = I$ and $\omega_{\times} t = \theta_{\times}$ $R(t) = \exp(\omega_{\times} t) = \exp(\theta_{\times})$ The large provides of $\exp(\theta_{\times})$

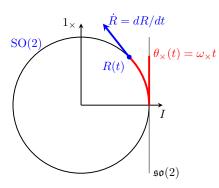
$$\exp(\theta_{\times}) = I + \theta_{\times} + (\theta_{\times})^2 / 2 + (\theta_{\times})^3 / 3! + \cdots$$
$$= I(1 - \theta^2 / 2 + \cdots) + 1_{\times} (\theta - \theta^3 / 3! + \cdots)$$
$$= I\cos\theta + 1_{\times}\sin\theta = \begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}$$

Example: SO(2)



• Write ODE and integrate $R^T \dot{R} = \omega_{\times} \implies \dot{R} = R \cdot \omega_{\times}$ $R(t) = R_0 \exp(\omega_{\times} t)$ $\Rightarrow \dot{R} = R_0 \exp(\omega_{\times} t) \cdot \omega_{\times} = R \cdot \omega_{\times}$ • If $R_0 = R(0) = I$ and $\omega_{\times} t = \theta_{\times}$ $R(t) = \exp(\omega_{\times} t) = \exp(\theta_{\times})$

Example: SO(2)



• Write ODE and integrate

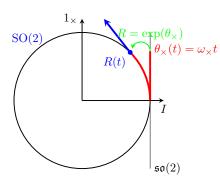
$$R^{T}\dot{R} = \omega_{\times} \implies \dot{R} = R \cdot \omega_{\times}$$
$$R(t) = R_{0} \exp(\omega_{\times} t)$$
$$\Rightarrow \dot{R} = R_{0} \exp(\omega_{\times} t) \cdot \omega_{\times} = R \cdot \omega_{\times}$$

• If
$$R_0 = R(0) = I$$
 and $\omega_{\times} t = \theta_{\times}$
 $R(t) = \exp(\omega_{\times} t) = \exp(\theta_{\times})$

• Taylor expansion of $\exp(\theta_{\times})$:

$$\exp(\theta_{\times}) = I + \theta_{\times} + (\theta_{\times})^2/2 + (\theta_{\times})^3/3! + \cdots$$
$$= I(1 - \theta^2/2 + \cdots) + 1_{\times}(\theta - \theta^3/3! + \cdots)$$
$$= I\cos\theta + 1_{\times}\sin\theta = \begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}$$

Example: SO(2)



• Write ODE and integrate

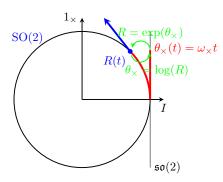
$$R^{T}\dot{R} = \omega_{\times} \implies \dot{R} = R \cdot \omega_{\times}$$
$$R(t) = R_{0} \exp(\omega_{\times} t)$$
$$\Rightarrow \dot{R} = R_{0} \exp(\omega_{\times} t) \cdot \omega_{\times} = R \cdot \omega_{\times}$$

• If
$$R_0 = R(0) = I$$
 and $\omega_{\times} t = \theta_{\times}$
 $R(t) = \exp(\omega_{\times} t) = \exp(\theta_{\times})$

• Taylor expansion of $\exp(\theta_{\times})$:

$$\exp(\theta_{\times}) = I + \theta_{\times} + (\theta_{\times})^2/2 + (\theta_{\times})^3/3! + \cdots$$
$$= I(1 - \theta^2/2 + \cdots) + 1_{\times}(\theta - \theta^3/3! + \cdots)$$
$$= I\cos\theta + 1_{\times}\sin\theta = \begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}$$

Example: SO(2)



• Write ODE and integrate

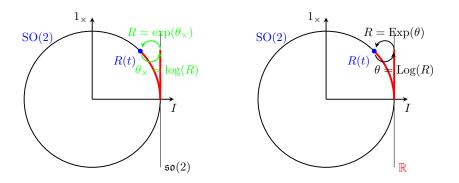
$$R^{T}\dot{R} = \omega_{\times} \implies \dot{R} = R \cdot \omega_{\times}$$
$$R(t) = R_{0} \exp(\omega_{\times} t)$$
$$\Rightarrow \dot{R} = R_{0} \exp(\omega_{\times} t) \cdot \omega_{\times} = R \cdot \omega_{\times}$$

• If
$$R_0 = R(0) = I$$
 and $\omega_{\times} t = \theta_{\times}$
 $R(t) = \exp(\omega_{\times} t) = \exp(\theta_{\times})$

• Taylor expansion of $\exp(\theta_{\times})$:

$$\exp(\theta_{\times}) = I + \theta_{\times} + (\theta_{\times})^2 / 2 + (\theta_{\times})^3 / 3! + \cdots$$
$$= I(1 - \theta^2 / 2 + \cdots) + 1_{\times} (\theta - \theta^3 / 3! + \cdots)$$
$$= I\cos\theta + 1_{\times}\sin\theta = \begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}$$

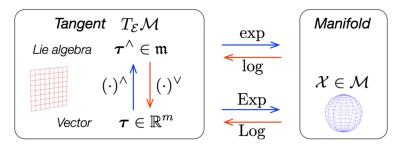
The capitalized exponential and logarithmic map



臣

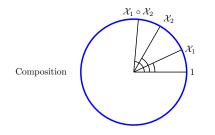
The capitalized exponential and logarithmic map

Skip the Lie algebra, and work always in Cartesian



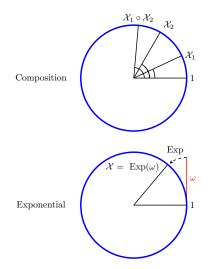
Exp and Log are mere shortcuts, but very useful

The plus operator: right- \oplus : $\mathcal{Y} = \mathcal{X} \oplus \omega$ (and left- \oplus : $\mathcal{Y} = \omega \oplus \mathcal{X}$)



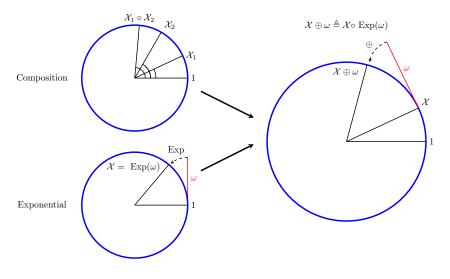
Э

The plus operator: right- \oplus : $\mathcal{Y} = \mathcal{X} \oplus \omega$ (and left- \oplus : $\mathcal{Y} = \omega \oplus \mathcal{X}$)

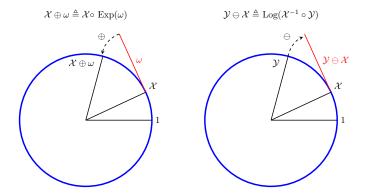


Э

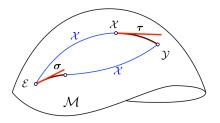
The plus operator: right- \oplus : $\mathcal{Y} = \mathcal{X} \oplus \omega$ (and left- \oplus : $\mathcal{Y} = \omega \oplus \mathcal{X}$)



The minus operator: right- \ominus : $\mathcal{Y} = \mathcal{X} \ominus \omega$ (and left- \ominus : $\mathcal{Y} = \omega \ominus \mathcal{X}$)



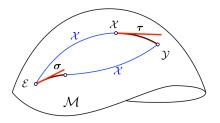
Plus and minus are alos shortcuts, but also very useful



Note: $\boldsymbol{\sigma} \in T_{\mathcal{E}}\mathcal{M}$ and $\boldsymbol{\tau} \in T_{\mathcal{X}}\mathcal{M}$

 $\mathcal{Y} = \boldsymbol{\sigma} \oplus \mathcal{X} = \mathcal{X} \oplus \boldsymbol{\tau}$ $\Rightarrow \boldsymbol{\sigma}^{\wedge} = \mathcal{X} \cdot \boldsymbol{\tau}^{\wedge} \cdot \mathcal{X}^{-1}$ $\Rightarrow \boldsymbol{\sigma} = \mathsf{Ad}_{\mathcal{X}} \cdot \boldsymbol{\tau}$

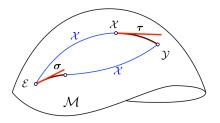
Linear: matrix operator
Maps: T_X M to T_E M



Note: $\boldsymbol{\sigma} \in T_{\mathcal{E}}\mathcal{M}$ and $\boldsymbol{\tau} \in T_{\mathcal{X}}\mathcal{M}$

 $\mathcal{Y} = \boldsymbol{\sigma} \oplus \mathcal{X} = \mathcal{X} \oplus \boldsymbol{\tau}$ $\Rightarrow \boldsymbol{\sigma}^{\wedge} = \mathcal{X} \cdot \boldsymbol{\tau}^{\wedge} \cdot \mathcal{X}^{-1}$ $\Rightarrow \boldsymbol{\sigma} = \mathsf{Ad}_{\mathcal{X}} \cdot \boldsymbol{\tau}$

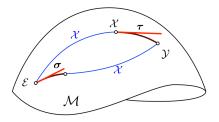
Linear: matrix operator
Maps: T_X M to T_E M



Note: $\boldsymbol{\sigma} \in T_{\mathcal{E}}\mathcal{M}$ and $\boldsymbol{\tau} \in T_{\mathcal{X}}\mathcal{M}$

 $\begin{aligned} \mathcal{Y} &= \boldsymbol{\sigma} \oplus \mathcal{X} = \mathcal{X} \oplus \boldsymbol{\tau} \\ &\Rightarrow \boldsymbol{\sigma}^{\wedge} = \mathcal{X} \cdot \boldsymbol{\tau}^{\wedge} \cdot \mathcal{X}^{-1} \\ &\Rightarrow \boldsymbol{\sigma} = \mathbf{Ad}_{\mathcal{X}} \cdot \boldsymbol{\tau} \end{aligned}$

Linear: matrix operator
Maps: T_X M to T_E M



Note: $\sigma \in T_{\mathcal{E}}\mathcal{M}$ and $\tau \in T_{\mathcal{X}}\mathcal{M}$

- $$\begin{split} \mathcal{Y} &= \boldsymbol{\sigma} \oplus \mathcal{X} = \mathcal{X} \oplus \boldsymbol{\tau} \\ &\Rightarrow \boldsymbol{\sigma}^{\wedge} = \mathcal{X} \cdot \boldsymbol{\tau}^{\wedge} \cdot \mathcal{X}^{-1} \\ &\Rightarrow \boldsymbol{\sigma} = \mathbf{Ad}_{\mathcal{X}} \cdot \boldsymbol{\tau} \end{split}$$
- Linear: matrix operator
- Maps: $T_{\mathcal{X}}\mathcal{M}$ to $T_{\mathcal{E}}\mathcal{M}$

Outline

Presentation: Some examples

Overview of Lie theory

- Lie group definition: Group, manifold, and action
- The tangent space: Lie algebra and Cartesian

Operators in the Lie theory

- The exponential and logarithmic map
- Plus and minus operators
- The adjoint matrix

4 Calculus and probability on Lie Groups

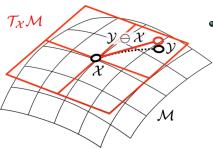
- Calculus and Jacobians
- Differentiation rules on Lie groups
- Perturbations on Lie groups and covariance matrices
- Integration on Lie groups

5 Applications: Localization

Conclusions and problems

Calculus on Lie groups

Use the plus and minus operators!



- Express as Cartesian vector:
 - Perturbations, errors, increments, ...
- And define easily:
 - Jacobians of functions $f:\mathcal{M}\to\mathcal{N}$
 - \bullet Covariances of elements ${\cal X}$ in ${\cal M}$

Jacobians on Lie groups

Use the plus and minus operators!

Vector spaces

Lie groups

$$J = \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}}$$
$$= \lim_{\boldsymbol{h} \to \boldsymbol{0}} \frac{f(\boldsymbol{x} + \boldsymbol{h}) - f(\boldsymbol{x})}{\boldsymbol{h}} \in \mathbb{R}^{n \times m}$$

$$J_r = \frac{Df(\mathcal{X})}{D\mathcal{X}}$$
$$= \lim_{\tau \to 0} \frac{f(\mathcal{X} \oplus \tau) \ominus f(\mathcal{X})}{\tau} \in \mathbb{R}^{n \times m}$$

same thing!!!

< □ > < 同 >

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \cdots \qquad \qquad \lim_{\tau \to 0} \frac{f(\mathcal{X} \oplus \tau) \ominus f(\mathcal{X})}{\tau}$$
$$= \lim_{h \to 0} \frac{Jh}{h} \qquad \qquad = \lim_{\tau \to 0} \frac{\log[f^{-1}(\mathcal{X})f(\mathcal{X} \circ \mathsf{Exp}(\tau))]}{\tau}$$
$$= \lim_{\tau \to 0} \frac{J_r \tau}{\tau} \triangleq \frac{\partial J_r \tau}{\partial \tau} = J_r$$

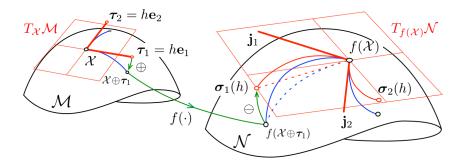
ㅋ ㅋ

Jacobians on Lie groups

Jacobian maps $T_{\mathcal{X}}\mathcal{M}$ to $T_{f(\mathcal{X})}\mathcal{N}$

$$f: \mathcal{M} \to \mathcal{N}; \mathcal{X} \mapsto \mathcal{Y} = f(\mathcal{X})$$

$$\boldsymbol{J}_r = \frac{Df(\mathcal{X})}{D\mathcal{X}} = \lim_{\boldsymbol{\tau} \to \boldsymbol{0}} \frac{f(\mathcal{X} \oplus \boldsymbol{\tau}) \ominus f(\mathcal{X})}{\boldsymbol{\tau}} \in \mathbb{R}^{n \times m}$$

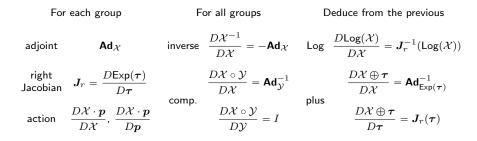


臣

(1)

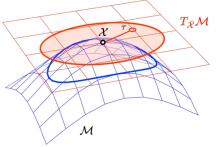
Differentiation rules on Lie groups

From elementary Jacobian blocks to any Jacobian



Use the chain rule for any other Jacobian!

Perturbations on Lie groups and covariance matrices



• Perturbation au over \mathcal{X} :

$$\mathcal{X} = \bar{\mathcal{X}} \oplus \boldsymbol{\tau}$$

Covariance of \mathcal{X} :

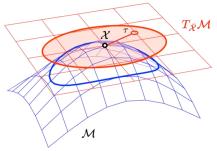
$$\begin{split} \boldsymbol{\Sigma} &\stackrel{\text{def}}{=} \mathsf{E}(\boldsymbol{\tau} \cdot \boldsymbol{\tau}^T) \\ &= \mathsf{E}[(\mathcal{X} \ominus \bar{\mathcal{X}}) \cdot (\mathcal{X} \ominus \bar{\mathcal{X}})^T] \end{split}$$

Propagation is easy!

 $\mathcal{Y} = f(\mathcal{X}) \qquad J = \frac{D\mathcal{Y}}{D\mathcal{X}}$ $\Rightarrow \Sigma_{\mathcal{Y}} = J \cdot \Sigma_{\mathcal{X}} \cdot J^{T}$

イロト イボト イヨト イヨト

Perturbations on Lie groups and covariance matrices



• Perturbation au over \mathcal{X} :

$$\mathcal{X} = \bar{\mathcal{X}} \oplus \boldsymbol{\tau}$$

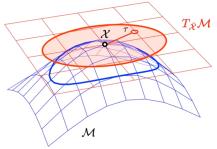
- Covariance of \mathcal{X} :
 - $$\begin{split} \boldsymbol{\Sigma} \stackrel{\text{def}}{=} \mathsf{E}(\boldsymbol{\tau} \cdot \boldsymbol{\tau}^T) \\ &= \mathsf{E}[(\mathcal{X} \ominus \bar{\mathcal{X}}) \cdot (\mathcal{X} \ominus \bar{\mathcal{X}})^T] \end{split}$$

Propagation is easy!

$$\mathcal{Y} = f(\mathcal{X})$$
 $J = \frac{D\mathcal{Y}}{D\mathcal{X}}$
 $\Rightarrow \Sigma_{\mathcal{Y}} = J \cdot \Sigma_{\mathcal{X}} \cdot J^{T}$

Image: A math a math

Perturbations on Lie groups and covariance matrices



• Perturbation au over \mathcal{X} :

$$\mathcal{X} = \bar{\mathcal{X}} \oplus \boldsymbol{\tau}$$

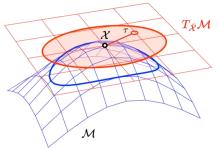
- Covariance of X:
 - $$\begin{split} \boldsymbol{\Sigma} &\stackrel{\text{def}}{=} \mathsf{E}(\boldsymbol{\tau} \cdot \boldsymbol{\tau}^T) \\ &= \mathsf{E}[(\mathcal{X} \ominus \bar{\mathcal{X}}) \cdot (\mathcal{X} \ominus \bar{\mathcal{X}})^T] \end{split}$$

Propagation is easy!

$$\mathcal{Y} = f(\mathcal{X}) \qquad \mathbf{J} = \frac{D\mathcal{Y}}{D\mathcal{X}}$$
$$\Rightarrow \mathbf{\Sigma}_{\mathcal{Y}} = \mathbf{J} \cdot \mathbf{\Sigma}_{\mathcal{X}} \cdot \mathbf{J}^{T}$$

< □ > < 同 >

Perturbations on Lie groups and covariance matrices



• Perturbation au over \mathcal{X} :

$$\mathcal{X} = \bar{\mathcal{X}} \oplus \boldsymbol{\tau}$$

• Covariance of \mathcal{X} :

$$\begin{split} \boldsymbol{\Sigma} &\stackrel{\text{def}}{=} \mathsf{E}(\boldsymbol{\tau} \cdot \boldsymbol{\tau}^T) \\ &= \mathsf{E}[(\mathcal{X} \ominus \bar{\mathcal{X}}) \cdot (\mathcal{X} \ominus \bar{\mathcal{X}})^T] \end{split}$$

Propagation is easy!

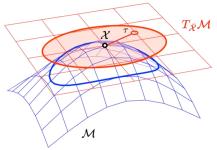
$$\mathcal{Y} = f(\mathcal{X})$$
 $J = \frac{D\mathcal{Y}}{D\mathcal{X}}$
 $\Rightarrow \Sigma_{\mathcal{Y}} = J \cdot \Sigma_{\mathcal{X}} \cdot J^{T}$

< □ > < 同 >

Э

▶ < ∃ ▶</p>

Perturbations on Lie groups and covariance matrices



• Perturbation τ over \mathcal{X} :

$$\mathcal{X} = \bar{\mathcal{X}} \oplus \boldsymbol{\tau}$$

• Covariance of \mathcal{X} :

$$\begin{split} \boldsymbol{\Sigma} &\stackrel{\text{def}}{=} \mathsf{E}(\boldsymbol{\tau} \cdot \boldsymbol{\tau}^T) \\ &= \mathsf{E}[(\mathcal{X} \ominus \bar{\mathcal{X}}) \cdot (\mathcal{X} \ominus \bar{\mathcal{X}})^T] \end{split}$$

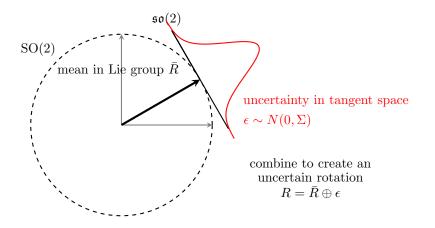
• Propagation is easy!

$$\mathcal{Y} = f(\mathcal{X}) \qquad \mathbf{J} = \frac{D\mathcal{Y}}{D\mathcal{X}}$$
$$\Rightarrow \mathbf{\Sigma}_{\mathcal{Y}} = \mathbf{J} \cdot \mathbf{\Sigma}_{\mathcal{X}} \cdot \mathbf{J}^{T}$$

< □ > < 同 >

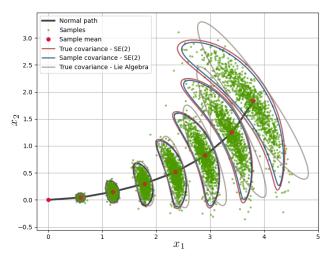
Э

Gaussian random variables and PDFs



Banana shape is Gaussian on the tangent space: SE(2)

Noisy process: $\mathcal{X}_{t+1} = \mathcal{X}_t \cdot \mathsf{Exp}(\boldsymbol{u}_t) \oplus \boldsymbol{\epsilon}_t$, where $\mathcal{X}_t \in \mathsf{SE}(2)$, $\boldsymbol{u}_t, \boldsymbol{\epsilon}_t \in \mathbb{R}^3$ ($\boldsymbol{\epsilon}_t^{\wedge} \in \mathfrak{se}(2)$), and $\boldsymbol{\epsilon}_t \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$



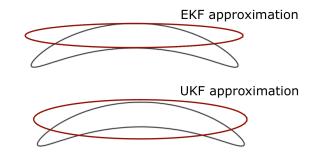
February 27th, 2025

イロト イボト イヨト イヨト

Compare with traditional EKF and UKF approach

Noisy process: $x_{t+1} = f(x_t, u_t) + \epsilon_t$, where f is a non-linear function and $x_t, u_t, \epsilon_t \in \mathbb{R}^3$

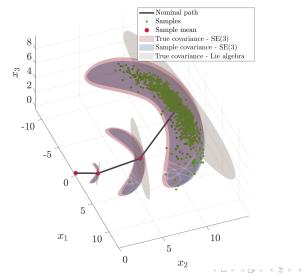
UKF vs. EKF - Banana Shape



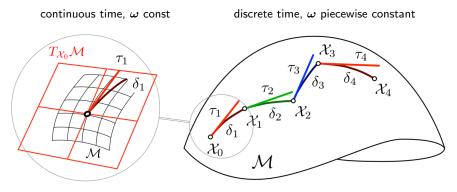
Courtesy by Stachniss, C. Introduction to Robot Mapping. Winter Semeter, 2012.

Banana shape is Gaussian on the tangent space: SE(3)

Noisy process: $\mathcal{X}_{t+1} = \mathcal{X}_t \cdot \mathsf{Exp}(\boldsymbol{u}_t) \oplus \boldsymbol{\epsilon}_t$, where $\mathcal{X}_t \in \mathsf{SE}(3)$, $\boldsymbol{u}_t, \boldsymbol{\epsilon}_t \in \mathbb{R}^6$ ($\boldsymbol{\epsilon}_t^{\wedge} \in \mathfrak{se}(3)$), and $\boldsymbol{\epsilon}_t \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$



Integration on Lie groups



 $\mathcal{X}(t) = \mathcal{X}_0 \cdot \mathsf{Exp}(\boldsymbol{\omega} t) \qquad \qquad \mathcal{X}_4 = \mathcal{X}_0 \oplus (\boldsymbol{\omega}_1 dt) \oplus (\boldsymbol{\omega}_2 dt) \oplus (\boldsymbol{\omega}_3 dt) \oplus (\boldsymbol{\omega}_4 dt)$

Note: $\boldsymbol{\tau} = \boldsymbol{\omega} dt$ and $\boldsymbol{\delta} = \mathsf{Exp}(\boldsymbol{\tau})$

Э

イロト イボト イヨト イヨト

Outline

Presentation: Some examples

Overview of Lie theory

- Lie group definition: Group, manifold, and action
- The tangent space: Lie algebra and Cartesian

Operators in the Lie theory

- The exponential and logarithmic map
- Plus and minus operators
- The adjoint matrix

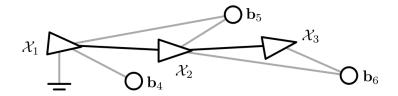
④ Calculus and probability on Lie Groups

- Calculus and Jacobians
- Differentiation rules on Lie groups
- Perturbations on Lie groups and covariance matrices
- Integration on Lie groups

5 Applications: Localization

Conclusions and problems

< □ > < □ >



Courtesy by Solà, J., Dery, J., and Atchuthan, D. (2021). A micro Lie theroy for state estimation in robotics.

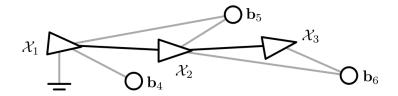
• Poses (unknown): $\mathcal{X} \sim N(\bar{\mathcal{X}}, \Sigma) \in SE(2)$ (or SE(3))

ullet Landmarks: $oldsymbol{b}_k \in \mathbb{R}^2$ (or \mathbb{R}^3)

if landmarks are known → KF-Based Localization

if landmarks are unknown → Graph-Based SLAM (Skip! Next time!)

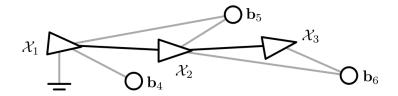
Image: A matrix and a matrix



Courtesy by Solà, J., Dery, J., and Atchuthan, D. (2021). A micro Lie theroy for state estimation in robotics.

- Poses (unknown): $\mathcal{X} \sim N(\bar{\mathcal{X}}, \Sigma) \in SE(2)$ (or SE(3))
- Landmarks: $\boldsymbol{b}_k \in \mathbb{R}^2$ (or \mathbb{R}^3)
 - if landmarks are known → KF-Based Localization
 - if landmarks are unknown → Graph-Based SLAM (Skip! Next time!)

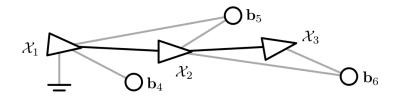
< □ > < 同 >



Courtesy by Solà, J., Dery, J., and Atchuthan, D. (2021). A micro Lie theroy for state estimation in robotics.

- Poses (unknown): $\mathcal{X} \sim N(\bar{\mathcal{X}}, \Sigma) \in SE(2)$ (or SE(3))
- Landmarks: $\boldsymbol{b}_k \in \mathbb{R}^2$ (or \mathbb{R}^3)
 - \bullet if landmarks are known \rightarrow KF-Based Localization
 - if landmarks are unknown \rightarrow Graph-Based SLAM (Skip! Next time!)

< □ > < 同 >



Courtesy by Solà, J., Dery, J., and Atchuthan, D. (2021). A micro Lie theroy for state estimation in robotics.

- Poses (unknown): $\mathcal{X} \sim N(\bar{\mathcal{X}}, \Sigma) \in SE(2)$ (or SE(3))
- Landmarks: $\boldsymbol{b}_k \in \mathbb{R}^2$ (or \mathbb{R}^3)
 - if landmarks are known \rightarrow KF-Based Localization
 - if landmarks are unknown → Graph-Based SLAM (Skip! Next time!)

I > <
 I >

Motion model:

• Always use right- for state prediction:

$$\mathcal{X}_t = f(\mathcal{X}_{t-1}, \boldsymbol{u}_t, \boldsymbol{\epsilon}_t)$$
$$= \mathcal{X}_{t-1} \oplus (\boldsymbol{u}_t + \boldsymbol{\epsilon}_t)$$

where $\boldsymbol{\epsilon}_t \sim N(\boldsymbol{0}, \boldsymbol{Q}_t)$ is the perturbation.

• Taylor expansion at $\mathcal{X}_{t-1}=ar{\mathcal{X}}_{t-1}$ and $oldsymbol{\epsilon}_t=oldsymbol{0}$, we have

$$\mathcal{X}_t = \bar{\mathcal{X}}_t \oplus F_t(\mathcal{X}_{t-1} \ominus \bar{\mathcal{X}}_{t-1}) \oplus W_t \epsilon_t,$$

where $F_t = rac{Df}{D\mathcal{X}_t}$ and $W_t = rac{Df}{D\epsilon_t}$ are jacobians.

• Define the error $oldsymbol{\xi}_t = \mathcal{X}_t \ominus ar{\mathcal{X}}_t$, then

$$\boldsymbol{\xi}_t = \boldsymbol{F}_t \boldsymbol{\xi}_{t-1} + \boldsymbol{W}_t \boldsymbol{\epsilon}_t$$

Motion model:

• Always use right- for state prediction:

$$\begin{aligned} \mathcal{X}_t &= f(\mathcal{X}_{t-1}, \boldsymbol{u}_t, \boldsymbol{\epsilon}_t) \\ &= \mathcal{X}_{t-1} \oplus (\boldsymbol{u}_t + \boldsymbol{\epsilon}_t) \end{aligned}$$

where $\boldsymbol{\epsilon}_t \sim N(\boldsymbol{0}, \boldsymbol{Q}_t)$ is the perturbation.

• Taylor expansion at $\mathcal{X}_{t-1} = \bar{\mathcal{X}}_{t-1}$ and $\boldsymbol{\epsilon}_t = \mathbf{0}$, we have

$$\mathcal{X}_t = \bar{\mathcal{X}}_t \oplus F_t(\mathcal{X}_{t-1} \ominus \bar{\mathcal{X}}_{t-1}) \oplus W_t \epsilon_t,$$

where $F_t = \frac{Df}{D\mathcal{X}_t}$ and $W_t = \frac{Df}{D\epsilon_t}$ are jacobians.

• Define the error $\boldsymbol{\xi}_t = \mathcal{X}_t \ominus \mathcal{X}_t$, then

$$\boldsymbol{\xi}_t = \boldsymbol{F}_t \boldsymbol{\xi}_{t-1} + \boldsymbol{W}_t \boldsymbol{\epsilon}_t$$

Motion model:

• Always use right- for state prediction:

$$\begin{aligned} \mathcal{X}_t &= f(\mathcal{X}_{t-1}, \boldsymbol{u}_t, \boldsymbol{\epsilon}_t) \\ &= \mathcal{X}_{t-1} \oplus (\boldsymbol{u}_t + \boldsymbol{\epsilon}_t) \end{aligned}$$

where $\boldsymbol{\epsilon}_t \sim N(\boldsymbol{0}, \boldsymbol{Q}_t)$ is the perturbation.

• Taylor expansion at $\mathcal{X}_{t-1} = \bar{\mathcal{X}}_{t-1}$ and $\boldsymbol{\epsilon}_t = \mathbf{0}$, we have

$$\mathcal{X}_t = \bar{\mathcal{X}}_t \oplus F_t(\mathcal{X}_{t-1} \ominus \bar{\mathcal{X}}_{t-1}) \oplus W_t \epsilon_t,$$

where $F_t = \frac{Df}{D\mathcal{X}_t}$ and $W_t = \frac{Df}{D\epsilon_t}$ are jacobians.

• Define the error $\boldsymbol{\xi}_t = \mathcal{X}_t \ominus \bar{\mathcal{X}}_t$, then

$$\boldsymbol{\xi}_t = \boldsymbol{F}_t \boldsymbol{\xi}_{t-1} + \boldsymbol{W}_t \boldsymbol{\epsilon}_t$$

• Predict the state by the motion model:

 $egin{array}{ll} \check{m{\xi}}_t = m{0} & ext{predicted error state} \ & & & \\ \check{m{\chi}}_t = ar{m{\chi}}_t = ar{m{\chi}}_{t-1} \oplus m{u}_t & ext{predicted nomial state} \ & & \\ \check{m{\Sigma}}_t = m{F}_t \widehat{m{\Sigma}}_{t-1} m{F}_t^T + m{W}_t m{Q}_t m{W}_t^T & ext{predicted error covariance} \end{array}$

- The perturbation ϵ_t has been propagate to the world frame, so the covariance $\check{\Sigma}_t$ is in the world frame.
- We have derived the exact same prediction results as the Invariant Extended Kalman Filter (IEKF)!

Predict the state by the motion model:

$$egin{aligned} &oldsymbol{\check{\xi}}_t = \mathbf{0} & ext{predicted error state} \ &oldsymbol{\check{\chi}}_t = ar{\mathcal{X}}_t = ar{\mathcal{X}}_{t-1} \oplus oldsymbol{u}_t & ext{predicted nomial state} \ &oldsymbol{\check{\Sigma}}_t = oldsymbol{F}_t \widehat{\mathbf{\Sigma}}_{t-1} oldsymbol{F}_t^T + oldsymbol{W}_t oldsymbol{W}_t^T & ext{predicted error covariance} \end{aligned}$$

- The perturbation ϵ_t has been propagate to the world frame, so the covariance $\check{\Sigma}_t$ is in the world frame.
- We have derived the exact same prediction results as the Invariant Extended Kalman Filter (IEKF)!

Predict the state by the motion model:

$$egin{aligned} &oldsymbol{\check{\xi}}_t = \mathbf{0} & ext{predicted error state} \ &oldsymbol{\check{\chi}}_t = ar{\mathcal{X}}_t = ar{\mathcal{X}}_{t-1} \oplus oldsymbol{u}_t & ext{predicted nomial state} \ &oldsymbol{\check{\Sigma}}_t = oldsymbol{F}_t \widehat{\mathbf{\Sigma}}_{t-1} oldsymbol{F}_t^T + oldsymbol{W}_t oldsymbol{W}_t^T & ext{predicted error covariance} \end{aligned}$$

- The perturbation ϵ_t has been propagate to the world frame, so the covariance $\check{\Sigma}_t$ is in the world frame.
- We have derived the exact same prediction results as the Invariant Extended Kalman Filter (IEKF)!

• Predict the state by the motion model:

$$egin{aligned} &\check{m{\xi}}_t = {m{0}} & ext{predicted error state} \ &\check{m{\chi}}_t = ar{m{\chi}}_t = ar{m{\chi}}_{t-1} \oplus m{u}_t & ext{predicted nomial state} \ &\check{m{\Sigma}}_t = m{F}_t \widehat{m{\Sigma}}_{t-1} m{F}_t^T + m{W}_t m{Q}_t m{W}_t^T & ext{predicted error covariance} \end{aligned}$$

- The perturbation ϵ_t has been propagate to the world frame, so the covariance $\check{\Sigma}_t$ is in the world frame.
- We have derived the exact same prediction results as the Invariant Extended Kalman Filter (IEKF)!

Measurement model for measurement in the body frame:

• Use the left- operation if the measurement is taken in the body frame, such as landmark observations from LiDAR or camera sensors.

• Measurements $oldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$\boldsymbol{y}_t = \boldsymbol{\mathcal{X}}_t^{-1} \cdot \boldsymbol{b} + \boldsymbol{\delta}_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation z_t such that

$$\begin{aligned} \boldsymbol{z}_t &= h(\mathcal{X}_t) \\ &= \bar{\mathcal{X}}_t \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t) \end{aligned}$$

• Taylor expansion at $\mathcal{X}_t = ar{\mathcal{X}}_t$ and $oldsymbol{\delta}_t = oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\boldsymbol{\delta}_t}$

Measurement model for measurement in the body frame:

- Use the left- \oplus operation if the measurement is taken in the body frame, such as landmark observations from LiDAR or camera sensors.
- Measurements $\boldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$\boldsymbol{y}_t = \boldsymbol{\mathcal{X}}_t^{-1} \cdot \boldsymbol{b} + \boldsymbol{\delta}_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation z_t such that

$$egin{aligned} oldsymbol{z}_t &= h(\mathcal{X}_t) \ &= ar{\mathcal{X}}_t \cdot (oldsymbol{y}_t - oldsymbol{ar{y}}_t) \end{aligned}$$

• Taylor expansion at $\mathcal{X}_t = \bar{\mathcal{X}}_t$ and $\delta_t = 0$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\boldsymbol{\delta}_t}$

Measurement model for measurement in the body frame:

- Use the left- operation if the measurement is taken in the body frame, such as landmark observations from LiDAR or camera sensors.
- Measurements $\boldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$\boldsymbol{y}_t = \boldsymbol{\mathcal{X}}_t^{-1} \cdot \boldsymbol{b} + \boldsymbol{\delta}_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation z_t such that

$$egin{aligned} oldsymbol{z}_t &= h(\mathcal{X}_t) \ &= ar{\mathcal{X}}_t \cdot (oldsymbol{y}_t - oldsymbol{ar{y}}_t) \end{aligned}$$

• Taylor expansion at $\mathcal{X}_t = ar{\mathcal{X}}_t$ and $oldsymbol{\delta}_t = oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\delta_t}$

Measurement model for measurement in the body frame:

- Use the left- operation if the measurement is taken in the body frame, such as landmark observations from LiDAR or camera sensors.
- Measurements $\boldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$\boldsymbol{y}_t = \mathcal{X}_t^{-1} \cdot \boldsymbol{b} + \boldsymbol{\delta}_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation \boldsymbol{z}_t such that

$$\begin{aligned} \boldsymbol{z}_t &= h(\mathcal{X}_t) \\ &= \bar{\mathcal{X}}_t \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t) \end{aligned}$$

ullet Taylor expansion at $\mathcal{X}_t=ar{\mathcal{X}_t}$ and $oldsymbol{\delta}_t=oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\delta_t}$

• We have derived the exact same correction results as the Right-Invariant Extended Kalman Filter (RI-EKF)!

244 / 251

Measurement model for measurement in the body frame:

- Use the left- operation if the measurement is taken in the body frame, such as landmark observations from LiDAR or camera sensors.
- Measurements $\boldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$\boldsymbol{y}_t = \mathcal{X}_t^{-1} \cdot \boldsymbol{b} + \boldsymbol{\delta}_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation \boldsymbol{z}_t such that

$$z_t = h(\mathcal{X}_t)$$
$$= \bar{\mathcal{X}}_t \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t)$$

ullet Taylor expansion at $\mathcal{X}_t=ar{\mathcal{X}}_t$ and $oldsymbol{\delta}_t=oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\boldsymbol{\delta}_t}$

• We have derived the exact same correction results as the Right-Invariant Extended Kalman Filter (RI-EKF)!

244 / 251

Measurement model for measurement in the body frame:

- Use the left- operation if the measurement is taken in the body frame, such as landmark observations from LiDAR or camera sensors.
- Measurements $\boldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$\boldsymbol{y}_t = \mathcal{X}_t^{-1} \cdot \boldsymbol{b} + \boldsymbol{\delta}_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation \boldsymbol{z}_t such that

$$z_t = h(\mathcal{X}_t)$$
$$= \bar{\mathcal{X}}_t \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t)$$

ullet Taylor expansion at $\mathcal{X}_t=ar{\mathcal{X}}_t$ and $oldsymbol{\delta}_t=oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $m{H}_t = rac{Dh}{D\mathcal{X}_t}$ and $m{V}_t = rac{Dh}{Dm{\delta}_t}$

• The noise error δ_t is from the body frame, we will have to switch the covariance from body frame to world frame.

• ${}^{w}\xi_{t} = \operatorname{Ad}_{\bar{\mathcal{X}}} \cdot {}^{b}\xi_{t} \Rightarrow {}^{w}\Sigma_{t} = \operatorname{Ad}_{\bar{\mathcal{X}}} \cdot {}^{b}\Sigma_{t} \cdot \operatorname{Ad}_{\bar{\mathcal{X}}}^{T}$

• Update the state by the measurement model:

$$\begin{aligned} \boldsymbol{z}_t &= \boldsymbol{\mathcal{X}}_t \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t) \\ \boldsymbol{S}_t &= \boldsymbol{H}_t \boldsymbol{\check{\Sigma}}_t \boldsymbol{H}_t^T + \boldsymbol{V}_t \boldsymbol{R}_t \boldsymbol{V}_t^T \\ \boldsymbol{K}_t &= \boldsymbol{\check{\Sigma}}_t \boldsymbol{H}_t^T \boldsymbol{S}_t^{-1} \\ \boldsymbol{\hat{\xi}}_t &= \boldsymbol{K}_t \boldsymbol{z}_t \\ \boldsymbol{\hat{\mathcal{X}}}_t &= \boldsymbol{\hat{\xi}}_t \oplus \bar{\boldsymbol{\mathcal{X}}}_t \\ \boldsymbol{\hat{\Sigma}}_t &= (I - \boldsymbol{K}_t \boldsymbol{H}_t) \boldsymbol{\check{\Sigma}}_t \end{aligned}$$

innovation

innovation covariance

Kalman gain

updated error state

updated nominal state

updated error covariance

イロト イヨト イヨト

 Switching the covariance twice during the update step is very costly. A more efficient approach is to express the covariance in the body frame during the prediction step.

• The noise error δ_t is from the body frame, we will have to switch the covariance from body frame to world frame.

•
$${}^{w}\boldsymbol{\xi}_{t} = \mathbf{Ad}_{\bar{\mathcal{X}}} \cdot {}^{b}\boldsymbol{\xi}_{t} \Rightarrow {}^{w}\boldsymbol{\Sigma}_{t} = \mathbf{Ad}_{\bar{\mathcal{X}}} \cdot {}^{b}\boldsymbol{\Sigma}_{t} \cdot \mathbf{Ad}_{\bar{\mathcal{X}}}^{T}$$

• Update the state by the measurement model:

$$\begin{aligned} \boldsymbol{z}_t &= \boldsymbol{\mathcal{X}}_t \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t) \\ \boldsymbol{S}_t &= \boldsymbol{H}_t \boldsymbol{\check{\Sigma}}_t \boldsymbol{H}_t^T + \boldsymbol{V}_t \boldsymbol{R}_t \boldsymbol{V}_t^T \\ \boldsymbol{K}_t &= \boldsymbol{\check{\Sigma}}_t \boldsymbol{H}_t^T \boldsymbol{S}_t^{-1} \\ \boldsymbol{\hat{\xi}}_t &= \boldsymbol{K}_t \boldsymbol{z}_t \\ \boldsymbol{\hat{\mathcal{X}}}_t &= \boldsymbol{\hat{\xi}}_t \oplus \boldsymbol{\bar{\mathcal{X}}}_t \\ \boldsymbol{\hat{\Sigma}}_t &= (I - \boldsymbol{K}_t \boldsymbol{H}_t) \boldsymbol{\check{\Sigma}}_t \end{aligned}$$

innovation

innovation covariance

Kalman gain

updated error state

updated nominal state

updated error covariance

イロト イヨト イヨト イ

• Switching the covariance twice during the update step is very costly. A more efficient approach is to express the covariance in the body frame during the prediction step.

• The noise error δ_t is from the body frame, we will have to switch the covariance from body frame to world frame.

•
$${}^{w}\boldsymbol{\xi}_{t} = \mathbf{Ad}_{\bar{\mathcal{X}}} \cdot {}^{b}\boldsymbol{\xi}_{t} \Rightarrow {}^{w}\boldsymbol{\Sigma}_{t} = \mathbf{Ad}_{\bar{\mathcal{X}}} \cdot {}^{b}\boldsymbol{\Sigma}_{t} \cdot \mathbf{Ad}_{\bar{\mathcal{X}}}^{T}$$

• Update the state by the measurement model:

$$\begin{aligned} \boldsymbol{z}_t &= \bar{\boldsymbol{\mathcal{X}}}_t \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t) \\ \boldsymbol{S}_t &= \boldsymbol{H}_t \check{\boldsymbol{\Sigma}}_t \boldsymbol{H}_t^T + \boldsymbol{V}_t \boldsymbol{R}_t \boldsymbol{V}_t^T \\ \boldsymbol{K}_t &= \check{\boldsymbol{\Sigma}}_t \boldsymbol{H}_t^T \boldsymbol{S}_t^{-1} \\ \hat{\boldsymbol{\xi}}_t &= \boldsymbol{K}_t \boldsymbol{z}_t \\ \hat{\boldsymbol{\mathcal{X}}}_t &= \hat{\boldsymbol{\xi}}_t \oplus \bar{\boldsymbol{\mathcal{X}}}_t \\ \hat{\boldsymbol{\Sigma}}_t &= (I - \boldsymbol{K}_t \boldsymbol{H}_t) \check{\boldsymbol{\Sigma}}_t \end{aligned}$$

innovation innovation covariance Kalman gain updated error state updated nominal state updated error covariance

• Switching the covariance twice during the update step is very costly. A more efficient approach is to express the covariance in the body frame during the prediction step.

• The noise error δ_t is from the body frame, we will have to switch the covariance from body frame to world frame.

•
$${}^{w}\boldsymbol{\xi}_{t} = \mathbf{Ad}_{\bar{\mathcal{X}}} \cdot {}^{b}\boldsymbol{\xi}_{t} \Rightarrow {}^{w}\boldsymbol{\Sigma}_{t} = \mathbf{Ad}_{\bar{\mathcal{X}}} \cdot {}^{b}\boldsymbol{\Sigma}_{t} \cdot \mathbf{Ad}_{\bar{\mathcal{X}}}^{T}$$

• Update the state by the measurement model:

$$\begin{aligned} \boldsymbol{z}_t &= \bar{\boldsymbol{\mathcal{X}}}_t \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t) \\ \boldsymbol{S}_t &= \boldsymbol{H}_t \check{\boldsymbol{\Sigma}}_t \boldsymbol{H}_t^T + \boldsymbol{V}_t \boldsymbol{R}_t \boldsymbol{V}_t^T \\ \boldsymbol{K}_t &= \check{\boldsymbol{\Sigma}}_t \boldsymbol{H}_t^T \boldsymbol{S}_t^{-1} \\ \hat{\boldsymbol{\xi}}_t &= \boldsymbol{K}_t \boldsymbol{z}_t \\ \hat{\boldsymbol{\mathcal{X}}}_t &= \hat{\boldsymbol{\xi}}_t \oplus \bar{\boldsymbol{\mathcal{X}}}_t \\ \hat{\boldsymbol{\Sigma}}_t &= (I - \boldsymbol{K}_t \boldsymbol{H}_t) \check{\boldsymbol{\Sigma}}_t \end{aligned}$$

innovation innovation covariance Kalman gain updated error state updated nominal state updated error covariance

• Switching the covariance twice during the update step is very costly. A more efficient approach is to express the covariance in the body frame during the prediction step.

Measurement model for measurement in the world frame:

- Use the right- \oplus operation if the measurement is position measurement in the world frame from a GPS receiver.
- Measurements $oldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$y_t = \mathcal{X}_t \cdot b + \delta_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

Define the innovation z_t such that

$$z_t = h(\mathcal{X}_t)$$
$$= \bar{\mathcal{X}}_t^{-1} \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t)$$

• Taylor expansion at $\mathcal{X}_t = ar{\mathcal{X}}_t$ and $oldsymbol{\delta}_t = oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\boldsymbol{\delta}_t}$

Measurement model for measurement in the world frame:

- \bullet Use the right- \oplus operation if the measurement is position measurement in the world frame from a GPS receiver.
- Measurements $y_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$y_t = \mathcal{X}_t \cdot b + \delta_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation z_t such that

$$z_t = h(\mathcal{X}_t)$$
$$= \bar{\mathcal{X}}_t^{-1} \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t)$$

• Taylor expansion at $\mathcal{X}_t = \bar{\mathcal{X}}_t$ and $\delta_t = 0$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\boldsymbol{\delta}_t}$

 We have derived the exact same correction results as the Left-Invariant Extended Kalman Filter (LI-EKF)!

246 / 251

Measurement model for measurement in the world frame:

- \bullet Use the right- \oplus operation if the measurement is position measurement in the world frame from a GPS receiver.
- Measurements $\boldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$y_t = \mathcal{X}_t \cdot b + \delta_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

Define the innovation z_t such that

$$z_t = h(\mathcal{X}_t)$$
$$= \bar{\mathcal{X}}_t^{-1} \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t)$$

• Taylor expansion at $\mathcal{X}_t = ar{\mathcal{X}}_t$ and $oldsymbol{\delta}_t = oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\delta_t}$

Measurement model for measurement in the world frame:

- \bullet Use the right- \oplus operation if the measurement is position measurement in the world frame from a GPS receiver.
- Measurements $\boldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$y_t = \mathcal{X}_t \cdot b + \delta_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation \boldsymbol{z}_t such that

$$z_t = h(\mathcal{X}_t)$$
$$= \bar{\mathcal{X}}_t^{-1} \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t)$$

• Taylor expansion at $\mathcal{X}_t = ar{\mathcal{X}_t}$ and $oldsymbol{\delta}_t = oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\delta_t}$

• We have derived the exact same correction results as the Left-Invariant Extended Kalman Filter (LI-EKF)!

Y.-C. Zhang

246 / 251

Measurement model for measurement in the world frame:

- \bullet Use the right- \oplus operation if the measurement is position measurement in the world frame from a GPS receiver.
- Measurements $\boldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$y_t = \mathcal{X}_t \cdot b + \delta_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation \boldsymbol{z}_t such that

$$z_t = h(\mathcal{X}_t)$$
$$= \bar{\mathcal{X}}_t^{-1} \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t)$$

ullet Taylor expansion at $\mathcal{X}_t=ar{\mathcal{X}}_t$ and $oldsymbol{\delta}_t=oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $H_t = \frac{Dh}{D\mathcal{X}_t}$ and $V_t = \frac{Dh}{D\delta_t}$

• We have derived the exact same correction results as the Left-Invariant Extended Kalman Filter (LI-EKF)!

246 / 251

Measurement model for measurement in the world frame:

- \bullet Use the right- \oplus operation if the measurement is position measurement in the world frame from a GPS receiver.
- Measurements $\boldsymbol{y}_t \in \mathbb{R}^2$ (or \mathbb{R}^3) have this from:

$$y_t = \mathcal{X}_t \cdot b + \delta_t,$$

where $\boldsymbol{\delta}_t \sim N(\boldsymbol{0}, \boldsymbol{R}_t)$.

• Define the innovation \boldsymbol{z}_t such that

$$egin{aligned} oldsymbol{z}_t &= h(\mathcal{X}_t) \ &= ar{\mathcal{X}}_t^{-1} \cdot (oldsymbol{y}_t - oldsymbol{ar{y}}_t) \end{aligned}$$

ullet Taylor expansion at $\mathcal{X}_t=ar{\mathcal{X}}_t$ and $oldsymbol{\delta}_t=oldsymbol{0}$, we have

$$\boldsymbol{z}_t = \boldsymbol{H}_t \boldsymbol{\xi}_t + \boldsymbol{V}_t \boldsymbol{\delta}_t,$$

where $m{H}_t = rac{Dh}{D\mathcal{X}_t}$ and $m{V}_t = rac{Dh}{Dm{\delta}_t}$

- No covariance switch is required as the covariance is already expressed in the world frame.
- Update the state by the measurement model:

 $\begin{aligned} \boldsymbol{z}_t &= \bar{\boldsymbol{\mathcal{X}}}_t^{-1} \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t) \\ \boldsymbol{S}_t &= \boldsymbol{H}_t \check{\boldsymbol{\Sigma}}_t \boldsymbol{H}_t^T + \boldsymbol{V}_t \boldsymbol{R}_t \boldsymbol{V}_t^T \\ \boldsymbol{K}_t &= \check{\boldsymbol{\Sigma}}_t \boldsymbol{H}_t^T \boldsymbol{S}_t^{-1} \\ \hat{\boldsymbol{\xi}}_t &= \boldsymbol{K}_t \boldsymbol{z}_t \\ \hat{\boldsymbol{\mathcal{X}}}_t &= \bar{\boldsymbol{\mathcal{X}}}_t \oplus \hat{\boldsymbol{\xi}}_t \\ \hat{\boldsymbol{\Sigma}}_t &= (I - \boldsymbol{K}_t \boldsymbol{H}_t) \check{\boldsymbol{\Sigma}}_t \end{aligned}$

nnovation nnovation covariance Kalman gain updated error state updated nominal state updated error covariance

- No covariance switch is required as the covariance is already expressed in the world frame.
- Update the state by the measurement model:

$$\begin{aligned} \boldsymbol{z}_t &= \bar{\boldsymbol{\mathcal{X}}}_t^{-1} \cdot (\boldsymbol{y}_t - \bar{\boldsymbol{y}}_t) \\ \boldsymbol{S}_t &= \boldsymbol{H}_t \check{\boldsymbol{\Sigma}}_t \boldsymbol{H}_t^T + \boldsymbol{V}_t \boldsymbol{R}_t \boldsymbol{V}_t^T \\ \boldsymbol{K}_t &= \check{\boldsymbol{\Sigma}}_t \boldsymbol{H}_t^T \boldsymbol{S}_t^{-1} \\ \hat{\boldsymbol{\xi}}_t &= \boldsymbol{K}_t \boldsymbol{z}_t \\ \hat{\boldsymbol{\mathcal{X}}}_t &= \bar{\boldsymbol{\mathcal{X}}}_t \oplus \hat{\boldsymbol{\xi}}_t \\ \hat{\boldsymbol{\Sigma}}_t &= (I - \boldsymbol{K}_t \boldsymbol{H}_t) \check{\boldsymbol{\Sigma}}_t \end{aligned}$$

innovation innovation covariance Kalman gain updated error state updated nominal state updated error covariance

Outline

Presentation: Some examples

Overview of Lie theory

- Lie group definition: Group, manifold, and action
- The tangent space: Lie algebra and Cartesian

Operators in the Lie theory

- The exponential and logarithmic map
- Plus and minus operators
- The adjoint matrix

④ Calculus and probability on Lie Groups

- Calculus and Jacobians
- Differentiation rules on Lie groups
- Perturbations on Lie groups and covariance matrices
- Integration on Lie groups

5 Applications: Localization

6 Conclusions and problems

< □ > < □ >

- We begin with an introduction to Lie theory, emphasizing its foundational role in advanced robotics applications.
- Key theoretical concepts are covered, including Lie groups, manifolds, tangent spaces, Lie algebras, exponential and logarithmic maps, and adjoint matrices.
- Practical applications are introduced, focusing on integration into calculus for operations such as derivatives, Jacobians, and uncertainty modeling, including perturbations, covariance handling, and integration.
- Simulations and real-world examples are demonstrated for SE(2) and SE(3) using ESKF localization techniques.

< 口 > < 同 >

- We begin with an introduction to Lie theory, emphasizing its foundational role in advanced robotics applications.
- Key theoretical concepts are covered, including Lie groups, manifolds, tangent spaces, Lie algebras, exponential and logarithmic maps, and adjoint matrices.
- Practical applications are introduced, focusing on integration into calculus for operations such as derivatives, Jacobians, and uncertainty modeling, including perturbations, covariance handling, and integration.
- Simulations and real-world examples are demonstrated for SE(2) and SE(3) using ESKF localization techniques.

- We begin with an introduction to Lie theory, emphasizing its foundational role in advanced robotics applications.
- Key theoretical concepts are covered, including Lie groups, manifolds, tangent spaces, Lie algebras, exponential and logarithmic maps, and adjoint matrices.
- Practical applications are introduced, focusing on integration into calculus for operations such as derivatives, Jacobians, and uncertainty modeling, including perturbations, covariance handling, and integration.
- Simulations and real-world examples are demonstrated for SE(2) and SE(3) using ESKF localization techniques.

- We begin with an introduction to Lie theory, emphasizing its foundational role in advanced robotics applications.
- Key theoretical concepts are covered, including Lie groups, manifolds, tangent spaces, Lie algebras, exponential and logarithmic maps, and adjoint matrices.
- Practical applications are introduced, focusing on integration into calculus for operations such as derivatives, Jacobians, and uncertainty modeling, including perturbations, covariance handling, and integration.
- Simulations and real-world examples are demonstrated for SE(2) and SE(3) using ESKF localization techniques.

Problems

• The motion model is typically expressed in continuous form as:

$$\frac{d}{dt}\mathcal{X}_t = f_{\boldsymbol{u}_t}(\mathcal{X}_t)$$
$$= \mathcal{X}_t \boldsymbol{u}_t^{\wedge}$$

How do we compute the Jacobians for this continuous ODE?

• If the control input $oldsymbol{u}_t$ depends on the state \mathcal{X}_t , then we need to calculate:

$$\boldsymbol{F}_t = \frac{D\mathcal{X}_t}{D\mathcal{X}_{t-1}} + \frac{D\mathcal{X}_t}{D\boldsymbol{u}_t} \frac{D\boldsymbol{u}_t}{D\mathcal{X}_{t-1}},$$

where the Jacobian term $\frac{Du_t}{DX_{t-1}}$ is unclear to me.

• In the SE_k(3) setting, incorporating sensor bias into the state matrix breaks the group-affine property. What is the appropriate method to address and resolve this issue?

Problems

• The motion model is typically expressed in continuous form as:

$$\frac{d}{dt}\mathcal{X}_t = f_{\boldsymbol{u}_t}(\mathcal{X}_t)$$
$$= \mathcal{X}_t \boldsymbol{u}_t^{\wedge}$$

How do we compute the Jacobians for this continuous ODE?

• If the control input u_t depends on the state \mathcal{X}_t , then we need to calculate:

$$\boldsymbol{F}_t = \frac{D\mathcal{X}_t}{D\mathcal{X}_{t-1}} + \frac{D\mathcal{X}_t}{D\boldsymbol{u}_t} \frac{D\boldsymbol{u}_t}{D\mathcal{X}_{t-1}},$$

where the Jacobian term $\frac{D\boldsymbol{u}_t}{D\boldsymbol{\chi}_{t-1}}$ is unclear to me.

• In the SE_k(3) setting, incorporating sensor bias into the state matrix breaks the group-affine property. What is the appropriate method to address and resolve this issue?

Problems

• The motion model is typically expressed in continuous form as:

$$\frac{d}{dt}\mathcal{X}_t = f_{\boldsymbol{u}_t}(\mathcal{X}_t)$$
$$= \mathcal{X}_t \boldsymbol{u}_t^{\wedge}$$

How do we compute the Jacobians for this continuous ODE?

• If the control input u_t depends on the state \mathcal{X}_t , then we need to calculate:

$$\boldsymbol{F}_t = \frac{D\mathcal{X}_t}{D\mathcal{X}_{t-1}} + \frac{D\mathcal{X}_t}{D\boldsymbol{u}_t} \frac{D\boldsymbol{u}_t}{D\mathcal{X}_{t-1}},$$

where the Jacobian term $\frac{D\boldsymbol{u}_t}{D\boldsymbol{X}_{t-1}}$ is unclear to me.

• In the SE_k(3) setting, incorporating sensor bias into the state matrix breaks the group-affine property. What is the appropriate method to address and resolve this issue?

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで