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1	 Introduction

With the continuous improvement of artificial 
intelligence, self-driving technology has become the 
trend of automobile development in the future. The 
combination of high-tech self-driving technology and 
daily sanitation sweeper is a bold, innovative, and 
practical trial. Capable of working overnight without 
human interventions, the autonomous road sweeper is 
a promising solution to effectively clean public open 
spaces with a reduced cost (1), (2). To finish cleaning 
tasks in different scenarios, road sweepers should 
have two main functions: exploration and sweeping.

Exploration is required if the map is unknown, 
and in such case, exploration should be executed 
at least once before assigning the vehicle sweeping 
task. While driving through the area, simultaneous 
localization and mapping (SLAM) enables the vehicle 
to build a map as localizing itself in it. To decide 
where to go during the exploration, a goal point 
could be decided through algorithms to search on 
the current frontiers. Then path planning algorithms 
take effort to generate a path for the control module 
to follow. In the whole process, the perception 
module works to detect static and dynamic vehicles, 
pedestrians, etc. The detection result could either 
be utilized to improve map quality by removing the 
obstacles marked on map caused by dynamic vehicles, 
or to help the planning system for dynamic avoidance.

Sweeping task requires the map which is built 
through exploration as an input. Apart from the 
same modules during exploration, a decision-making 
module is added to decide when to switch between 
exploration and sweeping missions.

In addition, the decision module also monitors 
the vehicle state and surrounding objects to react 
for emergency. For the planning module, a cost-
effectiveness coverage path planning (CPP) algorithm 
need to be appended. However, designing the path 
planning algorithm for the sweeping stage is harder 
compared with the exploration stage for two reasons. 
First, the sweeper needs to turn more frequently to 
cover the geofence area; however, road sweepers are 
typically large in size (3), leading to a large vehicle 
turning radius. Second, since the coverage radius of 
autonomous road sweepers is close to half the vehicle 
width, the vehicle needs to operate near obstacles 
to maximally cover an area (4), making the coverage 
path sensitive to the map uncertainty. As a result, 
to ensure safe sweeping in an obstacle-cluttered 
environment, the coverage path planning algorithm 
should take into account the vehicle dynamics and the 
uncertainty in the map from the perception system.

To solve these problems, we develop a complete 
autonomous truck system with sensor configuration and 
software modules including perception, localization, 
planning, decision, and control. We adopt ROS system 
(Robotic Operating System) to mount different parts 
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map, and follows the generated path to clean and coverage most of the areas. The effectiveness of the proposed 
approach is verified.
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together. For the exploration and sweeping tasks, 
we design original path planning algorithms and 
compare the performance with other benchmarks. To 
validate the eff ectiveness of the proposed system, we 
accomplish a demonstration which simulates the tasks 
that given an unknown geofence area, the sweeper 
truck explores the environment, builds the map, and 
follows the generated path to clean and coverage 
most of the areas. It was done in the parking lot of 
Isuzu Technical Center of America (ITCA) using an 
Isuzu MY21 truck.

Based on the discussion above, the novelties 
and contributions of this paper are summarized as 
follows.

◦  A complete autonomous truck system is built 
and presented for real-word application.

◦  This paper provides a hierarchical planning 
system. It can highly effi  cient build the map at 
the same time avoid dynamic and unforeseen 
objects with considering vehicle constrains.

◦  The paper presents newly developed CPP 
algorithm for autonomous road sweepers in 
the obstacle-cluttered environments.

◦  The eff ectiveness and robustness of the 
proposed method in real-world applications 
are validated by the experiments.

The remainder of this paper is organized as 
follows. In Section	2, we provide the hardware and 
software system developed for the road sweeper. The 
detailed algorithms are then introduced in Section	3. 
In Section	4, the proposed approaches are validated 
through a demonstration. Finally, conclusions and 
future work are given in Section	5.

2	 System	Description

In this section, the setup of the testing vehicle is 
fi rst introduced. An overview of the road sweeper 
system is shown in Figure	1.

2.1	 Hardware
In our case, the test truck is equipped with three 

mechanical LiDARs and three industrial cameras. 
Figure	2 gives the sensors layout of the truck. The 
long range 40-channel mechanical LiDAR is mounted 
on the top of the truck head to have a board view, and 
two short range 64-channel mechanical LiDARs are 
placed on each side of the truck head to avoid blind 
spots. All LiDARs are running at the rate of 10 Hz. 
Three industrial cameras are installed in front of the 
truck to achieve approximately 150 degrees of fi eld 
of view. All cameras are running at the rate of 15 Hz.

Figure	1　	An	overview	of	the	systems	involved	in	the	perception,	localization,	planning,	and	control	
of	the	autonomous	road	sweeper.

Administrator
ハイライト表示

Administrator
ハイライト表示



Exploration	and	Sweeping	for	Autonomous	Sweeper	Truck	in	the	Geofence	Scenario

－ 3 －

2.2	 Perception	and	Tracking
As the “eye” of autonomous vehicles, the 

perception algorithm is designed to intelligently 
perceive the surrounding environments, which 
provides 3D information of surrounding objects to 
the downstream modules of the autonomous driving 
system. Moreover, by using 3D perception results as 
inputs, the tracking algorithm is implemented to track 
multiple objects over time. The tracking results will 
be the inputs of the downstream modules for decision 
making and planning algorithms.

2.3	 Localization	and	Mapping
The important characteristic that could assist in 

autonomous navigation is the ability of the vehicle 
to concurrently construct a map for an unknown 
environment and localize itself within the same 
environment. This computational problem is known 
as SLAM.

To achieve the online SLAM task, we make use of 
the combination of the measurements from LiDAR, 
IMU, and GNSS to estimate the vehicle state in 
an unknown environment and output the vehicle’s 
pose (i.e., position and orientation). The vehicle’s 
pose and the lidar measurements are further used 
for registration of the point cloud to build a 3D 
occupancy grid map. In this work, the size of each 
grid in the occupancy grid is set to be 0.5 m × 0.5 m.

2.4	 Decision	Making
As the “brain” of autonomous vehicles, decision-

making system is signifi cant for the safe and effi  cient 
driving of vehicles. Decision making is the transition 
between the perception module and the motion 
planning module. In general, the inputs of decision-
making system are environmental clues and status 
of ego vehicle, while the outputs are a series of 
strategies including high-level behaviors and low-
level control commands that are fed into the motion 
planning module.

2.5	 Planning
To solve the optimal planning task with 

abstraction and simplifi cation, we break the task 
up into a hierarchy of optimization problems. By 
doing this, we can tailor the inputs and outputs 
of each optimization problem to the correct level 
of abstraction. At the top of this hierarchy is the 
mission planning, which focuses on solving the 
autonomous driving mission of navigating to the 
destination at the map level. The next level is the 
behavior planning, deciding which behaviors the 
vehicle should take. We then adopt a local planner to 
calculate a collision-free path and a velocity profi le 
to the required goal state. Finally, the computed 
motion plan is passed to the controllers to follow. 
Each of these optimization problems has diff erent 
objectives and constraints to solve it, which we will 
discuss in detail in the next section.

3	 Methodology

In this section, the exploration and sweeping 
mission are fi rstly introduced. Then, the detailed 
algorithms for each module is formulated.

3.1	 Tasks
3.1.1	 Exploration
When the sweeper enters an unknown area for 

the fi rst time, the exploration task is activated. The 
missions of the exploration task are fully exploring 
the designated area and constructing a map in the 
meantime. While exploring, obstacles like parked 
vehicles, curbs, and other static objects are plotted on 
the map. Dynamic obstacles, such as moving vehicles  
and pedestrians, won’t be recorded into the fi nal map, 
but they will be used for collision avoidance.

Figure	2　	Illustration	of	the	sensors	layout	
of	the	truck.
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To explore continuously, the sweeper needs to 
update its target and plan paths at a fairly high 
frequency on the constructing map. Once the quality 
and completeness of the map reaches the desired 
level, the exploration mission is finished and the 
update of the map is terminated.

3.1.2	 Sweeping	
The sweeping mission requires the exploration 

mission to be completed at least once. The goal of 
the sweeping mission is to cover the designated area 
by the width of the sweeper cleaning system. At the 
beginning of the sweeping mission, a path optimizer 
generates a relative optimal sweeping path with high 
coverage rate and short traveling distance. Then, 
the sweeper follows the path and avoids any dynamic 
obstacles. The sweeping mission ends when the entire 
path is executed.

3.2	 Perception	and	Tracking
3.2.1	 3D	Perception
As mentioned in Section	 2, three LiDARs and 

three cameras are installed and need to be calibrated 
together. We use the open source ROS camera 
calibration package to get the intrinsic value for the 
camera and the Velo2cam (5) to get the extrinsic value 
between cameras and LiDARs. These calibrations 
are only needed to be done once unless any sensors 
layout changes.

As shown in Figure	3, the perception process has 
three steps. First, three LiDARs fusion is done to 
increase the density of the point cloud on objects. 
Second, using calibration parameters, the modified 
MVX-Net (6) fuses multi-modal low-level features 
from 3D LiDARs and industrial cameras to generate 
3D information of surrounding objects in the local 
coordinate frame, including locations, dimensions, 
orientations, and confidence scores of the objects. 
Finally, combined with the localization information, 
these outputs in the local coordinate frame are 
converted into the global coordinate frame as the 
inputs for tracking component.

3.2.2	 3D	Multi-Object	Tracking
To generate dynamic and static objects, the 

AB3DMOT algorithm (7) is adopted. It mainly 
includes 4 modules, which are 3D object detection, 
3D Kalman filter, data association, and birth and 
death memory. 3D object detection accepts the point 
cloud to generate perception results. 3D Kalman 
filter predicts the state of object trajectories from 
the previous frame to the current frame for state 
estimation. The Hungarian algorithm is utilized for 
data association. The Birth and death memory module 
is used for adding new trajectories or removing lost 
trajectories. After all these processes, dynamic and 
static objects can be differentiated.

3.3	 Localization	and	Mapping
To achieve online SLAM task, we make use of 

the combination of F-LOAM (8) and OctoMap (9) to 
localize the truck and build the surrounding map in 
an unknown environment at the same time.

For the LiDAR odometry, F-LOAM formulates 
the SLAM problem as scan-to-scan match and scan-
to-map refinement. The idea is to extract edge and 
planar features from the laser scan, and then the 
features are used to estimate the optimal pose of the 
truck between the current frame and the global map by 
minimizing point-to-plane and point-to-edge distance. 
In addition, we also modify the F-LOAM package 
and make it capable of receiving sensor data from 
IMU and GNSS. The estimated LiDAR odometry is 
then fused with the odometry from IMU and GNSS 
sensors to have a better 3D pose estimation and at 
the same time keep low computational cost.

The localization results are then passed to 
OctoMap for constructing a 3D map. The mapping 
approach is based on octrees and uses probabilistic 

Figure	3　	Structure	of	deep	learning	based	
neural	network
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occupancy estimation. It explicitly represents not 
only occupied space, but also free and unknown 
areas. The resulting 3D occupancy map is then used 
to generate multi-layered projected 2D maps, which 
allows the planning component to plan a drive-able 
path as well as avoiding any collision.

3.4	 Decision	Making
We adopt fi nite state machine (FSM) to implement 

our decision-making module. FSM is the most 
representative rule-based method. With discrete 
inputs and outputs, corresponding actions are 
generated depending on the responding to external 
events and states of agents are then transited from 
one to another.

Based on our tasks, we design a mission state 
machine as shown in Figure	4. There are two main 
phases: exploration and sweeping. First, when the 
vehicle is started, the current state directly moves 
forward to the exploration state and sends out signals 
to the planning module to start the exploration 
task. Then it waits for the exploration fi nish signal 
and changes to sweeping state. After entering the 
sweeping state, it will generate a signal, which 
triggers the planning module to generate coverage 
path.

Besides of the mission state machine, we also 
design a vehicle state machine and a behavior state 
machine. The vehicle state machine monitors the 
hardware’s health status and generates alarm if 
anomaly features appears. The behavior state machine 
monitors whether there are unexpected vehicles or 
pedestrians appear. And if such case happens, it will 
generate signals to interrupt the current mission and 
trigger the planning module to generate a safe path.

3.5	 Planning
3.5.1	 Exploration	Planner
As indicated in Figure	 5, the task for the 

exploration planner is to analyze the map and vehicle 
state, and then provide a global reference path. 
The planning space of the exploration planner is 
an occupancy grid map, in which each node contains 
the position information (x, y) and the probability of 
whether it is occupied by an obstacle.

In the Figure	 6, the exploration planner fi rstly 
detects frontiers, which form the boundary between 
known and unknown spaces. To be more specifi c, the 
unknown space has a value of -1 and the known space 
has a value from 0 to 100, indicating the possibility 
of occupancy. A frontier is a region of interest where 
the goal is set for the vehicle to reach. The position 
of the goal is obtained by calculating the distance 
between the frontiers and the vehicle state, and 
selecting the closest one.

Figure	4　	Mission	state	machine Figure	5　Planning	fl	ow	chart
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To reach the goal position through a collision-free 
path, we implement a sampling-based path planning 
method based on the RRT-Connect algorithm (10), where 
both of the steering constrains and nonholonomic 
kinematics are taken into consideration.

The method works by incrementally building two 
rapidly- exploring random trees (RRTs) (11) rooted at 
the start and the goal configurations. While extending 
nodes, a sequence of points are inserted based on 
the kinematic model. The junction condition for both 
trees is checked at every iteration and the path 
is found once the condition meets. Notice that the 
junction condition also considers the vehicle model. 
Therefore, the exploration path is always feasible 
for vehicle maneuver.

The main challenge of the exploration planning 
is the update frequency. Although RRT-Connect is 
a relatively fast planning algorithm, the computation 
time scales up when the map grows. To stabilize the 
update frequency and speed up the planning process, 
we limit the sampling space using a time-varied 
ellipse, inspired by the batch informed trees (BIT) 
algorithm (12). The sampling space is an ellipse whose 
focuses are the goal position and the vehicle position, 
while the eccentricity of the ellipse is decided by the 
BIT algorithm and changed with the iteration times.

3.5.2	 Sweeping	Planner
To cover the designated area, we propose a novel 

coverage path planning algorithm, which includes 
three steps, as shown in Figure	 7. First, the map 
is post-processed with morphological operations 
and convexification to reduce the uncertainty in 
the map. Second, based on the post-processed map, 
the boustrophedon cellular decomposition (BCD) is 
modified to generate path segments that cover the 
sweeping area considering vehicle dynamics. Finally, 
a generalized traveling salesman problem (GTSP) is 
formulated and solved to connect the path segments 
for a CPP path with the minimum length.

The optimization problem of the CPP has two 
objective variables: the coverage rate and the 
length of the sweeping path. The coverage rate of 
a sweeping area is defined as the ratio between the 
number of covered grids and the number of total 
grids. The algorithm maximizes the coverage rate 
and minimizes the length of the sweeping path to 
reach that coverage rate.

3.5.3	 Behavior	Planner
Behavior planner deals with unexpected objects. 

The inputs are the mission path and a list of the 
surrounding objects from the perception module 
and the tracking module. It monitors whether the 
surrounding objects (cars or pedestrians) block 
the path or tend to collide with the ego vehicle. 
If such case is detected, the behavior planner will 
start to replace the unsafe part of the mission path 
with the safe path. Our planner uses the hybrid  
A* algorithm to generate avoidance path. The 
hybrid A* is a robust path planning method for 
non-holonomic robots such as autonomous vehicles. 
Compared with the original A* algorithm, it also 
considers the limitation of the turning angle.

3.5.4	 Local	Planner
To increase the robustness of the system, a local 

planner is implemented between the global planner 
and the control module. The local planner is designed 
to generate a flexible and smooth path. For this 
purpose, the dynamic window approach (DWA) (13) is 
adopted. The DWA is capable of planning in real 
time and generating collision-free trajectories.

Compared to the regular DWA which has goals, 
obstacles, and speed costs, we add new cost functions 
to cope with our scenario. The cost functions are the 
following:

Figure	6　Exploration	planner

Figure	7　Sweeping	planner
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◦  Speed cost: 
Frequent velocity changing, including speed 

changing and steering oscillation, is undesirable 
and may cause uncomfortable maneuvers. This 
cost penalizes velocity changes. The cost value is 
proportional to the absolute difference between 
previous velocity state and new velocity state.

◦  Static obstacle cost: 
A newly introduced cost measures the 

distance from the considered trajectory to 
the static obstacles. The cost is zero when all 
obstacles are located out of the safe region 
along the trajectory.

◦  Dynamic obstacle cost: 
Similar to the static obstacle cost, this cost 

measures the distance from the ego vehicle 
trajectory and the trajectories of dynamic 
obstacles. The cost is zero when all trajectories 
of dynamic obstacles maintain a safe distance 
from the trajectory.

3.6	 Control
In order to execute the path, we implement a PID 

controller as shown in Figure	8. First, the controller 
selects a sequence of way points from the local path 
and find a continuous fitting curve. Next, the input 
of the PID controller is the steering angle error 
and the lateral deviation, which are obtained from 
the fitted curve. Then, the PID controller with the 
dynamic vehicle model sends out a steering angle 
command in order to correct those two deviations. 
Finally, a discrete steering filter is introduced to the 
system, considering the thermoelectric property of 
the steering column.

4	 Demonstration	Result

4.1	 Maps	and	Experiment	Settings
To access the performance of the proposed 

road sweeper system, we perform the test at the 
ITCA’s parking lot as shown in Figure	 9. The 
boundary highlighted in red in Figure	9 represents 
the designated area of the exploration and sweeping 
missions.

4.2	 Exploration	Results
4.2.1	 3D	Map
The map built through the exploration stage is 

shown in Figure	10. The 3D map is then compressed 
to occupancy grid map.

Figure	8　Control	flow	chart.

Figure	9　	A	bird’s	eye	view	of	the	parking	lot	
at	Isuzu	Technical	Center	of	America.	
The	truck	on	the	road	at	the	bottom	is	
the	testing	vehicle.

Figure	10　3D	Map
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4.2.2	 Object	Avoidance
As is shown in Figure	 11(a), during the 

exploration stage, an unexpected moving vehicle the 
exploration path. Though the exploration planner 
fails to generate a collision-free global path in time. 
The local planner detects the possible collision and 
generates a short collision-free path to avoid the 
moving vehicle Figure	11(b). It enables the vehicle to 
pass the object when the exploration planner finds a 
new path for vehicle to follow Figure	11(c).

4.3	 Sweeping	Result
In this section, the CPP algorithm proposed in 

Section	3 is validated. To demonstrate the dynamic 
feasibility of the proposed approach, a test-bed 
vehicle is deployed in the explored parking lot to 
evaluate the path. The coverage radius of the vehicle 
is set as 2 grids. The number of iteration for genetic 
algorithm is 1500 Figure	12.

◦  Evaluation	of	the	executed	CPP	path
To further validate the proposed approach, the 

test-bed truck is employed to follow the CPP path 
planned by the proposed approach. The executed 
vehicle path is given in Figure	12. The coverage rate 
and the path length of the executed path are 83.01 % 
and 2924 m, respectively. As shown in Figure	12, the 
planned path can be well followed by the vehicle, and 
all the obstacles in the parking lot can be avoided. 
Meanwhile, the loss in the coverage rate is minimal 
(i.e. 1.61 %) between the planned and executed paths.

(a)	Path	following

(b)	Local	planner	reaction

(c)	Global	planner	reaction

Figure	11　	Object	avoidance	example.	The	
unexpected	moving	vehicle	is	
represented	in	the	red	box	in	(a)	
and	(b).	The	crimson	line	represents	
the	global	path	planned	by	the	
exploration	planner.	The	pink	line	
in	(b)	represents	the	collision-free	
path	planned	by	the	local	planner.	(c)	
shows	the	avoidance	path	planned	
by	the	global	planner.
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5	 Conclusion

In this paper we focus on exploration and sweeping 
tasks for autonomous driving system. We develop a 
hierarchical planning system which is highly efficient 
in building the map at the same time avoiding dynamic 
and unforeseen objects. We develop an original CPP 
algorithm with three steps: map post-processing, 
decomposition and optimal. A complete autonomous 
sweeper system is built for validation. The system 
contains sensors configuration and software modules 
including perception, localization, planning, decision 
making, and control. During the validation experiment, 
the sweeper truck is able to build a 3D point cloud 
map of the designated parking lot. Some designed 
behaviors have been tested during the exploration 
process that includes making right angle turns in a 
single lane, dodging incoming moving vehicles, and 
avoiding static obstacles. In the sweeping mission 
experiment, an optimal sweeping path with about 80 
percent coverage rate is generated and successfully 
executed. The results show that the sweeper truck 
meets the design requirement. The proposed system 
can also be extended to complete other sweeping 
related tasks thanks to the modularized component 
design.

あとがき

米国のスーパーなどの大きな駐車場を深夜に清掃
装置を架装した商用車が清掃しています。いすゞＮシ
リーズの使われ方の一つであるそのような清掃車の自
動運転化（無人運転化）という使命を受けて自動運転
制御を自社開発しました。本稿で報告させていただい
たように、初見の駐車場を無人で探索、最も効率的な
清掃パターンを内包した最適化したシステム制御によ
り自動清掃を実施し、かつ探索時点では存在しなかっ
た外乱（他車両・自転車・歩行者の侵入など）にも耐え
うるシステムとなっています。今後はこの開発で培った
経験・スキルをいすゞ自動車といすゞ中央研究所の自
動運転開発チームの一員として発揮していきます。

最後に例年と同じ言葉になりますが「いすゞの中で
役に立ついすゞテクニカルセンターオブアメリカ　Inc．
でありたい」と社員一同が一丸となって取り組んでい
る様子が本報告で少しでも伝われば幸いです。

（ITCA チーフエンジニア　深井 泰雄）
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