
STT 873 HW3

This HW is due on Oct 30th.

Question 1(email the R code directly to zhang318@stt.msu.edu and xyy@egr.msu.edu):
Compare the performance of LS, Best subset, Ridge Regression, LASSO, PCR and PLS on
the Prostate Cancer Data. Use the same procedure on data preparation as used in the
textbook (Sections 3.2.1 and 3.3.4). The Prostate Cancer Data are available from the book
website www-stat.stanford.edu/ElemStatLearn. Report both the R code and the results.

Question 2 (email the R code directly to zhang318@stt.msu.edu and xyy@egr.msu.edu):

(1) Write a R code to generate the Lasso solution path and analyze the following dataset:
https://goo.gl/h779vj (You can compare your result with the R packages ’Lars’ or
’elasticnet’. Details of the algorithm can be found in Section 5.6 of the book ”Statis-
tical Learning with Sparsity”).

(2) Now let’s deal with some highly correlated X. Download data from the following link:
https://goo.gl/xSHnWr
find the solution path for Lasso and Elastic net. Report the results and explain the
differences.

(3) Report boxplots of 1000 bootstrap realizations of β̂∗(λ̂CV) similar to Figure 6.4 in the
book ”Statistical Learning with Sparsity”.

(4) For λ = 0.1, run the post selection inference for Lasso using the second dataset. Report
your result using figure similar to Figure 6.12 in the book ”Statistical Learning with
Sparsity”.

Question 3 (Gaussian maximal inequalities): In class, we extensively used the follow-
ing Gaussian maximal inequality to bound the slow rate, which you will prove here, over
the next few parts. If Wi ∼ N(0, σ2

i ), i = 1, . . . , p are Gaussian variates, not necessarily
independent, then for any δ > 0,

P( max
i=1,...,d

|Wi| ≤ σ
√

2 log(ed/δ)) ≥ 1− δ, (1)

where σ = maxi=1,...,d σi.

(1) Prove that, for any t > 0,

P( max
i=1,...,d

|Wi| ≥ t) ≤ 2d
φ(t/σ)

t/σ
,

where φ is the standard normal density. Hint: you may use Mills inequality.



(2) Using the result from the previous part, plug in t = σ2
√

log(ed/δ) and establish (1).

The result (1) is a high-probability bound on the maximum of Gaussians. We can also
establish an expectation bound,

E( max
i=1,...,d

|Wi|) ≤ σ
√

2 log(2p). (2)

(3) To prove that, for any t > 0

E( max
i=1,...,d

|Wi|) ≤
log(2p)

t
+ tσ2/2.

Hint: use Jensens inequality to argue that exp(tE(maxi=1,...,dWi)) ≤ E(exp(maxi=1,...,d tWi));
also, it will help to recall that the moment-generating function of a standard Gaussian
variate. Then, you can bound the expectation for the absolute value.

(4) Using the result from the previous part, plug in an appropriate value of t and establish
(2).

Question 4 (In-sample risk for the lasso): Assume that (xi, yi) ∈ Rd × R, i = 1, . . . , n
are i.i.d. pairs satisfying yi = xTi β0 + εi, where β0 ∈ Rd is the unknown parameter. We
also assume xi ∼ PX and εi ∼ N(0, σ2) with the predictors and errors being independent.
Additionally, assume that PX is a distribution supported on [−M,M ]d. Let λ̂ be the lasso
estimator in constrained form,

β̂ = argminβ∈Rd‖y −Xβ‖22 subject to ‖β‖1 ≤ t,

where y = (y1, . . . , yn) ∈ Rn is the response vector and X ∈ Rn×p is the matrix of predictors,
with rows xi, i = 1, . . . , n.

(1) Prove that the lasso estimator, with t = ‖β0‖11, has in-sample risk satisfying

1

n
E‖Xβ̂ −Xβ0‖22 ≤Mσ‖β0‖1

√
2 log(2d)

n
,

where the expectation is taken over the training data (xi, yi), i = 1, . . . , n. Hint: follow
the same strategy we used in class to derive the slow rate for the lasso estimator in
bound form. Take an expectation where appropriate (rather than invoking high-
probability arguments as we did in class), and apply the result in (2).


