STT 873 HW2 (Solution Keys)

This HW is due on Sep 25th.

Question 1: Prove the inner product $\langle\cdot, \cdot\rangle$ defined in the RKHS is a well defined inner product by verifying the following properties
(1) Symmetric: $\langle f, g\rangle=\langle g, f\rangle$. (3 pts)
(2) Linear: $\langle c f+d g, h\rangle=c\langle f, h\rangle+d\langle g, h\rangle$. (3 pts)
(3) $\langle f, f\rangle=0$ iff $f=0$. (4 pts)

Solution: Let

$$
f(\cdot)=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right), g(\cdot)=\sum_{j=1}^{m} \beta_{j} k\left(\cdot, y_{j}\right) \text { and } h(\cdot)=\sum_{l=1}^{r} \gamma_{l} k\left(\cdot, z_{l}\right)
$$

(1) Note that k is symmetric, i.e, $k(x, y)=k(y, x)$. Then

$$
\begin{aligned}
\langle f, g\rangle & =\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(x_{i}, y_{j}\right) \\
& =\sum_{j=1}^{m} \sum_{i=1}^{n} \beta_{j} \alpha_{i} k\left(y_{j}, x_{i}\right) \\
& =\langle g, f\rangle
\end{aligned}
$$

(2) Note that

$$
\begin{aligned}
\langle f, g\rangle & =\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(x_{i}, y_{j}\right) \\
& =\sum_{j=1}^{m} \beta_{j} f\left(y_{j}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\langle c f+d g, h\rangle & =\sum_{l=1}^{r} \gamma_{l}\left(c f\left(z_{l}\right)+d g\left(z_{l}\right)\right) \\
& =c \sum_{l=1}^{r} \gamma_{l} f\left(z_{l}\right)+d \sum_{l=1}^{r} \gamma_{l} g\left(z_{l}\right) \\
& =c\langle f, h\rangle+d\langle g, h\rangle
\end{aligned}
$$

(3) " \Rightarrow " Note that $\langle k(\cdot, x), f\rangle=\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)=f(x)$. Then

$$
\begin{aligned}
|f(x)|^{2} & =|\langle k(\cdot, x), f\rangle|^{2} \\
& \leq\left|\langle k(\cdot, x), k(\cdot, x)\rangle^{\frac{1}{2}}\langle f, f\rangle^{\frac{1}{2}}\right|^{2} \quad \text { by Cauchy-Schwarz inequality } \\
& =k(x, x)\langle f, f\rangle \\
& =0
\end{aligned}
$$

which implies $f=0$, since $|f|^{2} \geq 0$.
$" \Leftarrow$ "

$$
\begin{aligned}
\langle f, f\rangle & =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) \\
& =\sum_{j=1}^{n} \alpha_{j} f\left(x_{j}\right) \\
& =0 \quad \text { since } f=0
\end{aligned}
$$

Question 2 (10 pts)
(1) Write a R function to solve the following RKHS regression problem.

$$
\begin{equation*}
\hat{f}_{\lambda}=\underset{f \in R K H S}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda\|f\|_{K}^{2} \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{K}$ is the norm defined in the RKHS space with Gaussian kernel $\left(K\left(x, y^{\prime}\right)=\right.$ $\exp \left(-\left\|x-y^{\prime}\right\|^{2} / 0.25\right)$), Laplacian kernel $K\left(x, y^{\prime}\right)=\exp \left(-\left\|x-y^{\prime}\right\|\right)$, or Polynomial kernel $\left.\left(K\left(x, y^{\prime}\right)=\left(<x, y^{\prime}\right\rangle+1\right)^{2}\right)$. (You can also compare your results with those using the R pacakge 'KERE').
(2) Download data from 'goo.gl/pkBTsy', and test your function with $\lambda=0.5$ and 0.01 for Gaussian and Laplacian kernels and $\lambda=0.5$ and 0.2 for Polynomial kernel. Plot X vs \hat{Y} on top of the original data points.

Solution: By the Representation Throrem, the minimizer \hat{f}_{λ} of equation (1) has the form

$$
\hat{f}_{\lambda}(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)
$$

where $K(s, t)$ is the reporducing kernel. See Wahaba (1990) or Gu (2002) for detail.
Define the observation vector $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}, \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$ and \boldsymbol{K} as the $n \times n$ matrix where the i, j entry is $\boldsymbol{K}_{i j}=K\left(x_{i}, x_{j}\right)$. The minimization of (1) then takes the form

$$
\|\boldsymbol{y}-\boldsymbol{K} \boldsymbol{\alpha}\|^{2}+\lambda \boldsymbol{\alpha}^{T} \boldsymbol{K} \boldsymbol{\alpha}
$$

Figure 1: RKHS Regression with specified kernel and λ.

Taking derviatives with respect to $\boldsymbol{\alpha}$, the minimizer over $\boldsymbol{\alpha}$ is

$$
\hat{\boldsymbol{\alpha}}=(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}
$$

and

$$
\hat{f}(x)=\boldsymbol{K}(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y} .
$$

The R code is in the Appendix. The result of the implemented RKHS Regression is plotted in Figure 1. It's clear that Gaussian kernel fits the data very well and there is a small difference between $\lambda=0.5$ and $\lambda=0.01$. The Laplacian kernel with $\lambda=0.5$ also fits the data very well, while with $\lambda=0.01$ appears to be overfitting. The polynomial kernel does not capture the shape of the data for either λ value.

