
STT 873 HW2 (Solution Keys)

This HW is due on Sep 25th.

Question 1: Prove the inner product 〈·, ·〉 defined in the RKHS is a well defined inner
product by verifying the following properties

(1) Symmetric: 〈f, g〉 = 〈g, f〉. (3 pts)

(2) Linear: 〈cf + dg, h〉 = c〈f, h〉+ d〈g, h〉. (3 pts)

(3) 〈f, f〉 = 0 iff f = 0. (4 pts)

Solution: Let

f(·) =
n∑
i=1

αik(·, xi), g(·) =
m∑
j=1

βjk(·, yj) and h(·) =
r∑
l=1

γlk(·, zl)

(1) Note that k is symmetric, i.e, k(x, y) = k(y, x). Then

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjk(xi, yj)

=
m∑
j=1

n∑
i=1

βjαik(yj, xi)

= 〈g, f〉

(2) Note that

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjk(xi, yj)

=
m∑
j=1

βjf(yj)

Then

〈cf + dg, h〉 =
r∑
l=1

γl(cf(zl) + dg(zl))

= c

r∑
l=1

γlf(zl) + d

r∑
l=1

γlg(zl)

= c〈f, h〉+ d〈g, h〉

1



(3) “⇒” Note that 〈k(·, x), f〉 =
∑n

i=1 αik(xi, x) = f(x). Then

|f(x)|2 = |〈k(·, x), f〉|2

≤ |〈k(·, x), k(·, x)〉
1
2 〈f, f〉

1
2 |2 by Cauchy-Schwarz inequality

= k(x, x)〈f, f〉
= 0

which implies f = 0, since |f |2 ≥ 0.
“⇐”

〈f, f〉 =
n∑
i=1

n∑
j=1

αiαjk(xi, xj)

=
n∑
j=1

αjf(xj)

= 0 since f = 0.

Question 2 (10 pts)

(1) Write a R function to solve the following RKHS regression problem.

f̂λ = argmin
f∈RKHS

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2K , (1)

where ‖ · ‖K is the norm defined in the RKHS space with Gaussian kernel (K(x, y′) =
exp(−‖x − y′‖2/0.25)), Laplacian kernel K(x, y′) = exp(−‖x − y′‖),or Polynomial
kernel (K(x, y′) = (< x, y′ > +1)2). (You can also compare your results with those
using the R pacakge ’KERE’).

(2) Download data from ‘goo.gl/pkBTsy’, and test your function with λ = 0.5 and 0.01
for Gaussian and Laplacian kernels and λ = 0.5 and 0.2 for Polynomial kernel. Plot
X vs Ŷ on top of the original data points.

Solution: By the Representation Throrem, the minimizer f̂λ of equation (1) has the form

f̂λ(x) =
n∑
i=1

αiK(xi, x)

where K(s, t) is the reporducing kernel. See Wahaba (1990) or Gu (2002) for detail.
Define the observation vector y = (y1, . . . , yn)T , α = (α1, . . . , αn)T and K as the n × n
matrix where the i, j entry is Kij = K(xi, xj). The minimization of (1) then takes the form

‖y −Kα‖2 + λαTKα.
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Figure 1: RKHS Regression with specified kernel and λ.

Taking derviatives with respect to α, the minimizer over α is

α̂ = (K + λI)−1y

and
f̂(x) = K(K + λI)−1y.

The R code is in the Appendix. The result of the implemented RKHS Regression is
plotted in Figure 1. It’s clear that Gaussian kernel fits the data very well and there is a
small difference between λ = 0.5 and λ = 0.01. The Laplacian kernel with λ = 0.5 also fits
the data very well, while with λ = 0.01 appears to be overfitting. The polynomial kernel
does not capture the shape of the data for either λ value.
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