STT 873 HW2 (Solution Keys)

This HW is due on Sep 25th.

Question 1: Prove the inner product $\langle \cdot, \cdot \rangle$ defined in the RKHS is a well defined inner product by verifying the following properties

- (1) Symmetric: $\langle f, g \rangle = \langle g, f \rangle$. (3 pts)
- (2) Linear: $\langle cf + dg, h \rangle = c \langle f, h \rangle + d \langle g, h \rangle$. (3 pts)
- (3) $\langle f, f \rangle = 0$ iff f = 0. (4 pts)

Solution: Let

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i), \ g(\cdot) = \sum_{j=1}^{m} \beta_j k(\cdot, y_j) \text{ and } h(\cdot) = \sum_{l=1}^{r} \gamma_l k(\cdot, z_l)$$

(1) Note that k is symmetric, i.e, k(x, y) = k(y, x). Then

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, y_j)$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} \beta_j \alpha_i k(y_j, x_i)$$

$$= \langle g, f \rangle$$

(2) Note that

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, y_j)$$

$$= \sum_{j=1}^{m} \beta_j f(y_j)$$

Then

$$\begin{aligned} \langle cf + dg, h \rangle &= \sum_{l=1}^{r} \gamma_l (cf(z_l) + dg(z_l)) \\ &= c \sum_{l=1}^{r} \gamma_l f(z_l) + d \sum_{l=1}^{r} \gamma_l g(z_l) \\ &= c \langle f, h \rangle + d \langle g, h \rangle \end{aligned}$$

(3) " \Rightarrow " Note that $\langle k(\cdot, x), f \rangle = \sum_{i=1}^{n} \alpha_i k(x_i, x) = f(x)$. Then $|f(x)|^2 = |\langle k(\cdot, x), f \rangle|^2$ $\leq |\langle k(\cdot, x), k(\cdot, x) \rangle^{\frac{1}{2}} \langle f, f \rangle^{\frac{1}{2}}|^2$ by Cauchy-Schwarz inequality $= k(x, x) \langle f, f \rangle$ = 0

which implies f = 0, since $|f|^2 \ge 0$. " \Leftarrow "

$$\langle f, f \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j)$$
$$= \sum_{j=1}^{n} \alpha_j f(x_j)$$
$$= 0 \text{ since } f = 0.$$

Question 2 $(10 \ pts)$

(1) Write a R function to solve the following RKHS regression problem.

$$\hat{f}_{\lambda} = \underset{f \in RKHS}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \|f\|_K^2,$$
(1)

where $\|\cdot\|_{K}$ is the norm defined in the RKHS space with Gaussian kernel $(K(x, y') = \exp(-\|x - y'\|^2/0.25))$, Laplacian kernel $K(x, y') = \exp(-\|x - y'\|)$, or Polynomial kernel $(K(x, y') = (\langle x, y' \rangle + 1)^2)$. (You can also compare your results with those using the R pacakge 'KERE').

(2) Download data from 'goo.gl/pkBTsy', and test your function with $\lambda = 0.5$ and 0.01 for Gaussian and Laplacian kernels and $\lambda = 0.5$ and 0.2 for Polynomial kernel. Plot X vs \hat{Y} on top of the original data points.

Solution: By the *Representation Theorem*, the minimizer \hat{f}_{λ} of equation (1) has the form

$$\hat{f}_{\lambda}(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$$

where K(s,t) is the reporducing kernel. See Wahaba (1990) or Gu (2002) for detail.

Define the observation vector $\boldsymbol{y} = (y_1, \ldots, y_n)^T$, $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n)^T$ and \boldsymbol{K} as the $n \times n$ matrix where the *i*, *j* entry is $\boldsymbol{K}_{ij} = K(x_i, x_j)$. The minimization of (1) then takes the form

$$\|\boldsymbol{y} - \boldsymbol{K}\boldsymbol{\alpha}\|^2 + \lambda \boldsymbol{\alpha}^T \boldsymbol{K}\boldsymbol{\alpha}.$$

Figure 1: RKHS Regression with specified kernel and λ .

Taking derivatives with respect to α , the minimizer over α is

$$\hat{oldsymbol{lpha}} = (oldsymbol{K} + \lambda oldsymbol{I})^{-1} oldsymbol{y}$$

and

$$\hat{f}(x) = \boldsymbol{K}(\boldsymbol{K} + \lambda \boldsymbol{I})^{-1}\boldsymbol{y}.$$

The R code is in the Appendix. The result of the implemented RKHS Regression is plotted in Figure 1. It's clear that Gaussian kernel fits the data very well and there is a small difference between $\lambda = 0.5$ and $\lambda = 0.01$. The Laplacian kernel with $\lambda = 0.5$ also fits the data very well, while with $\lambda = 0.01$ appears to be overfitting. The polynomial kernel does not capture the shape of the data for either λ value.