STT 873 HW2

This HW is due on Sep 25th.

Question 1: Prove the inner product $\langle \cdot, \cdot \rangle$ defined in the RKHS is a well defined inner product by verifying the following properties

- (1) Symmetric: $\langle f, g \rangle = \langle g, f \rangle$.
- (2) Linear: $\langle cf + dg, h \rangle = c \langle f, h \rangle + d \langle g, h \rangle$
- (3) $\langle f, f \rangle = 0$ iff f = 0

Question 2 (email the R code directly to zhang318@stt.msu.edu and xyy@egr.msu.edu):

(1) Write a R function to solve the following RKHS regression problem.

$$\hat{f} = \operatorname{argmin}_{f \in RKHS} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||_K^2,$$

where $\|\cdot\|_{K}$ is the norm defined in the RKHS space with Gaussian kernel $(K(x, y') = \exp(-\|x - y'\|^2/0.25))$, Laplacian kernel $K(x, y') = \exp(-\|x - y'\|)$, or Polynomial kernel $(K(x, y') = (\langle x, y' \rangle + 1)^2)$. (You can also compare your results with those using the R pacakge 'KERE').

(2) Download data from 'goo.gl/pkBTsy', and test your function with $\lambda = 0.5$ and 0.01 for Gaussian and Laplacian kernels and $\lambda = 0.5$ and 0.2 for Polynomial kernel. Plot X vs \hat{Y} on top of the original data points.