STT 873 HW1 (Solution Keys)

This HW is due on Sep 18th.

Ex. 2.2: Show how to compute the Bayes decision boundary for the simulatoin example in Figure 2.5. (10 pts)

Solution: The Bayes classifier is

$$
\hat{G}(X)=\underset{g \in \mathcal{G}}{\operatorname{argmax}} P(g \mid X=x)
$$

In this two-class example ORANGE and BLUE, the decision boundary is the set where

$$
P(g=\operatorname{BLUE} \mid X=x)=P(g=\text { ORANGE } \mid X=x)=\frac{1}{2}
$$

By the Bayes rule, this is equivalent to the set of points where

$$
P(X=x \mid g=\mathrm{BLUE}) P(g=\mathrm{BLUE})=P(X=x \mid g=\mathrm{ORANGE}) P(g=\mathrm{ORANGE})
$$

and since we know $P(g)$ and $P(X=x \mid g)$, the decision boundary can be calculated explicitly.

Ex. 2.7: Suppose we have a sample of N pairs x_{i}, y_{i} drawn i.i.d. from the distribution characterized as follows:

$$
\begin{aligned}
x_{i} & \sim h(x), \text { the design density } \\
y_{i} & =f\left(x_{i}\right)+\varepsilon_{i}, f \text { is the regression function } \\
\varepsilon_{i} & \sim\left(0, \sigma^{2}\right) \text { mean zero, variance } \sigma^{2}
\end{aligned}
$$

We construct an estimator for f linear in the y_{i},

$$
\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N} l_{i}\left(x_{0} ; \mathcal{X}\right) y_{i}
$$

where the weights $l_{i}\left(x_{0} ; \mathcal{X}\right)$ do not depend on the y_{i}, but do depend on the entire training sequence of x_{i}, denoted here by \mathcal{X}.
(a) Show that linear regression and k-nearest-neighbor regression are members of this class of estimators. Describe explicitly the weights $l_{i}\left(x_{0} ; \mathcal{X}\right)$ in each of these cases. (3 pts)
(b) Decompose the conditional mean-squared error

$$
E_{\mathcal{Y} \mid \mathcal{X}}\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}
$$

into a conditional squared bias and a conditional variance component. Like \mathcal{X}, \mathcal{Y} represents the entire training sequence of y_{i}. (2 pts)
(c) Decompose the (unconditional) mean-squared error

$$
E_{\mathcal{Y}, \mathcal{X}}\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}
$$

intor a squared bias and a variance component. (2 pts)
(d) Establish a relationship between the squared biases and variances in the above two cases. (3 pts)

Solution:

(a) Recall that the estimator for f in the linear regression case is given by

$$
\hat{f}\left(x_{0}\right)=x_{0}^{T} \hat{\beta}
$$

where $\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y$. Then we can simply write

$$
\left.\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N}\left(x_{0}^{T}\left(X^{T} X\right)^{-1}\right) X^{T}\right)_{i} y_{i}
$$

Hence

$$
l_{i}\left(x_{0} ; \mathcal{X}\right)=\left(x_{0}^{T}\left(X^{T} X\right)^{-1} X^{T}\right)_{i}
$$

In the k-nearest-neighbor representation, we have

$$
\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N} \frac{y_{i}}{k} 1_{\left\{x_{i} \in N_{k}\left(x_{0}\right)\right\}}
$$

where $N_{k}\left(x_{0}\right)$ represents the set of k-nearest-neighbors of x_{0}. Clearly,

$$
l_{i}\left(x_{0} ; \mathcal{X}\right)=\frac{1}{k} 1_{\left\{x_{i} \in N_{k}\left(x_{0}\right)\right\}}
$$

(b)

$$
\begin{aligned}
E_{\mathcal{Y} \mid \mathcal{X}}\left[\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}\right]= & E_{\mathcal{Y} \mid \mathcal{X}}\left[\left(f\left(x_{0}\right)-E_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)+E_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)-\hat{f}\left(x_{0}\right)\right)^{2}\right] \\
= & E_{\mathcal{Y} \mid \mathcal{X}}\left[\left(f\left(x_{0}\right)-E_{\mathcal{Y | X}}\left(\hat{f}\left(x_{0}\right)\right)\right)^{2}\right]+E_{\mathcal{Y} \mid \mathcal{X}}\left[\left(E_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)-\hat{f}\left(x_{0}\right)\right)^{2}\right] \\
& +2 E_{\mathcal{Y} \mid \mathcal{X}}\left[\left(f\left(x_{0}\right)-E_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)\right)\left(E_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)-\hat{f}\left(x_{0}\right)\right)\right] \\
= & \operatorname{Var}_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)+\operatorname{Bias}_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)^{2}
\end{aligned}
$$

(c) Here we simplify the notation $E_{\mathcal{Y}, \mathcal{X}}$ to E.

$$
\begin{aligned}
E\left[\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}\right]= & E\left[\left(f\left(x_{0}\right)-E\left(\hat{f}\left(x_{0}\right)\right)+E\left(\hat{f}\left(x_{0}\right)\right)-\hat{f}\left(x_{0}\right)\right)^{2}\right] \\
= & E\left[\left(f\left(x_{0}\right)-E\left(\hat{f}\left(x_{0}\right)\right)\right)^{2}\right]+E\left[\left(E\left(\hat{f}\left(x_{0}\right)\right)-\hat{f}\left(x_{0}\right)\right)^{2}\right] \\
& +2 E\left[\left(f\left(x_{0}\right)-E\left(\hat{f}\left(x_{0}\right)\right)\right)\left(E\left(\hat{f}\left(x_{0}\right)\right)-\hat{f}\left(x_{0}\right)\right)\right] \\
= & \operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)+\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)^{2}
\end{aligned}
$$

(d) In (b) we have

$$
\begin{align*}
E\left[\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}\right] & =E_{\mathcal{X}}\left(E_{\mathcal{Y} \mid \mathcal{X}}\left[\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}\right]\right) \\
& =E_{\mathcal{X}}\left(\operatorname{Var}_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)+\operatorname{Bias}_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)^{2}\right) \\
& =E_{\mathcal{X}}\left(\operatorname{Var}_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)\right)+E_{\mathcal{X}}\left(\operatorname{Bias}_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)^{2}\right) \tag{1}
\end{align*}
$$

and in (c) we have

$$
\begin{equation*}
E\left[\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}\right]=\operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)+\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)^{2} \tag{2}
\end{equation*}
$$

Comparing (1) and (2) we have

$$
\begin{aligned}
E_{\mathcal{X}}\left(\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)^{2}\right)-\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)^{2} & =\operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)-E_{\mathcal{X}}\left(\operatorname{Var}_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)\right) \\
& =\operatorname{Var}_{\mathcal{X}}\left(E_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)\right) \\
& \geq 0
\end{aligned}
$$

The above inequality suggests that the expectation of conditional squared bias of $\hat{f}\left(x_{0}\right)$ is always greater than or equal to the squared bias of $\hat{f}\left(x_{0}\right)$, and the difference is equal to $\operatorname{Var}_{\mathcal{X}}\left(E_{\mathcal{Y} \mid \mathcal{X}}\left(\hat{f}\left(x_{0}\right)\right)\right)$.

Ex. 2.8: Compare the classification performance of linear regression and k-nearest neighbor classification on the zipcode data. In particular, consider only the 2's and 3's, and $k=1,3,5,7$ and 15 . Show both the training and test error for each choice. The zipcode data are available from the book website www-stat.stanford.edu/ElemStatLearn. (10 pts)

Solution: The implementation in R (see appendix) and graphs are attached. It's clear that for $k=1,3,5,7$ and 15 , the k-nearest neighbor has a smaller classification error for the testing dataset compared to that of the linear regression. Also note that the k-nearest neighbor classification error increases with k for both training and testing datasets.

Model	Training error	Test error
Linear Reg	0.0058	0.0412
1-NN	0.0000	0.0247
3-NN	0.0050	0.0302
5-NN	0.0058	0.0302
7-NN	0.0065	0.0330
15-NN	0.0094	0.0385

Ex. 2.9: Consider a linear regression model with p parameters, fit by least squares to a set of training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ drawn at random from a population. Let $\hat{\beta}$ be the least squares estimate. Suppose we have some test data $\left(\tilde{x}_{1}, \tilde{y}_{1}\right), \ldots,\left(\tilde{x}_{M}, \tilde{y}_{M}\right)$ drawn at

Figure 1: Classification errors for different methods on zipcode data.
random from the same population as the training data. If $R_{t r}(\beta)=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\beta^{T} x_{i}\right)^{2}$ and $R_{t e}(\beta)=\frac{1}{M} \sum_{i=1}^{M}\left(\tilde{y}_{i}-\beta^{T} \tilde{x}_{i}\right)^{2}$, prove that

$$
E\left[R_{t r}(\hat{\beta})\right] \leq E\left[R_{t e}(\hat{\beta})\right]
$$

where the expectations are over all that is random in each expression. (10 pts)
Solution: Consider two cases:
(i) If $N \leq M$:

$$
\begin{array}{rlrl}
E\left[R_{t e}(\hat{\beta})\right] & =E\left(\frac{1}{M} \sum_{i=1}^{M}\left(\tilde{y}_{i}-\hat{\beta}^{T} \tilde{x}_{i}\right)^{2}\right) \\
& =\frac{1}{M} \sum_{i=1}^{M} E\left(\tilde{y}_{i}-\hat{\beta}^{T} \tilde{x}_{i}\right)^{2} & & \\
& \geq \frac{1}{M} \sum_{i=1}^{M} E\left(\tilde{y}_{i}-\tilde{\beta}^{T} \tilde{x}_{i}\right)^{2} & & \text { where } \tilde{\beta}=\underset{\beta}{\operatorname{argmin}} \frac{1}{M} \sum_{i=1}^{M} E\left(\tilde{y}_{i}-\beta^{T} \tilde{x}_{i}\right)^{2} \\
& =E\left(\tilde{y}_{1}-\tilde{\beta}^{T} \tilde{x}_{1}\right)^{2} & & \because\left(\tilde{x}_{i}, \tilde{y}_{i}\right)^{\prime} \text { s are i.i.d } \\
& =\frac{1}{N} \sum_{i=1}^{N} E\left(\tilde{y}_{i}-\tilde{\beta}^{T} \tilde{x}_{i}\right)^{2} & & \text { i.i.d again } \\
& \geq \frac{1}{N} \sum_{i=1}^{N} E\left(\tilde{y}_{i}-\tilde{\beta}^{\prime T} \tilde{x}_{i}\right)^{2} & & \text { where } \tilde{\beta}^{\prime}=\underset{\beta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} E\left(\tilde{y}_{i}-\beta^{T} \tilde{x}_{i}\right)^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N} E\left(y_{i}-\hat{\beta}^{T} x_{i}\right)^{2} & & \because\left(\tilde{x}_{i}, \tilde{y}_{i}\right)^{\prime} \text { s and }\left(x_{i}, y_{i}\right)^{\prime} \text { s are i.i.d } \\
& =E\left(\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\hat{\beta}^{T} x_{i}\right)^{2}\right) & & \text { where } \hat{\beta}=\underset{\beta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} E\left(y_{i}-\beta^{T} x_{i}\right)^{2} \\
& =E\left[R_{t r}(\hat{\beta})\right] & &
\end{array}
$$

(ii) If $N>M$:

$$
\begin{aligned}
E\left[R_{t r}(\hat{\beta})\right] & =E\left(\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\hat{\beta}^{T} x_{i}\right)^{2}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} E\left(y_{i}-\hat{\beta}^{T} x_{i}\right)^{2} \\
& =E\left(y_{1}-\hat{\beta}^{T} x_{1}\right)^{2} \\
& =\frac{1}{M} \sum_{i=1}^{M} E\left(y_{i}-\hat{\beta}^{T} x_{i}\right)^{2} \\
& \leq \frac{1}{M} \sum_{i=1}^{M} E\left(y_{i}-\hat{\beta}^{\prime T} x_{i}\right)^{2} \quad \text { where } \hat{\beta}^{\prime}=\underset{\beta}{\operatorname{argmin}} \frac{1}{M} \sum_{i=1}^{M} E\left(y_{i}-\beta^{T} x_{i}\right)^{2} \\
& =\frac{1}{M} \sum_{i=1}^{M} E\left(\tilde{y}_{i}-\tilde{\beta}^{T} \tilde{x}_{i}\right)^{2} \\
& \leq \frac{1}{M} \sum_{i=1}^{M} E\left(\tilde{y}_{i}-\hat{\beta}^{T} \tilde{x}_{i}\right)^{2} \\
& =E\left(\frac{1}{M} \sum_{i=1}^{M}\left(\tilde{y}_{i}-\hat{\beta}^{T} \tilde{x}_{i}\right)^{2}\right) \\
& =E\left[R_{t e}(\hat{\beta})\right]
\end{aligned}
$$

