## STT 873 HW1 (Solution Keys)

This HW is due on Sep 18th.

**Ex. 2.2**: Show how to compute the Bayes decision boundary for the simulatoin example in Figure 2.5. (10 pts)

**Solution:** The Bayes classifier is

$$\hat{G}(X) = \operatorname*{argmax}_{g \in \mathcal{G}} P(g|X = x)$$

In this two-class example ORANGE and BLUE, the decision boundary is the set where

$$P(g = \text{BLUE}|X = x) = P(g = \text{ORANGE}|X = x) = \frac{1}{2}$$

By the Bayes rule, this is equivalent to the set of points where

$$P(X = x|g = BLUE)P(g = BLUE) = P(X = x|g = ORANGE)P(g = ORANGE)$$

and since we know P(g) and P(X = x|g), the decision boundary can be calculated explicitly.

**Ex. 2.7**: Suppose we have a sample of N pairs  $x_i$ ,  $y_i$  drawn i.i.d. from the distribution characterized as follows:

$$x_i \sim h(x)$$
, the design density  
 $y_i = f(x_i) + \varepsilon_i$ , f is the regression function  
 $\varepsilon_i \sim (0, \sigma^2)$  mean zero, variance  $\sigma^2$ 

We construct an estimator for f linear in the  $y_i$ ,

$$\hat{f}(x_0) = \sum_{i=1}^{N} l_i(x_0; \mathcal{X}) y_i,$$

where the weights  $l_i(x_0; \mathcal{X})$  do not depend on the  $y_i$ , but do depend on the entire training sequence of  $x_i$ , denoted here by  $\mathcal{X}$ .

- (a) Show that linear regression and k-nearest-neighbor regression are members of this class of estimators. Describe explicitly the weights  $l_i(x_0; \mathcal{X})$  in each of these cases. (3 pts)
- (b) Decompose the conditional mean-squared error

$$E_{\mathcal{Y}|\mathcal{X}}(f(x_0) - \hat{f}(x_0))^2$$

into a conditional squared bias and a conditional variance component. Like  $\mathcal{X}, \mathcal{Y}$  represents the entire training sequence of  $y_i$ . (2 pts) (c) Decompose the (unconditional) mean-squared error

$$E_{\mathcal{Y},\mathcal{X}}(f(x_0) - \hat{f}(x_0))^2$$

intor a squared bias and a variance component. (2 pts)

(d) Establish a relationship between the squared biases and variances in the above two cases. (3 pts)

## Solution:

(a) Recall that the estimator for f in the linear regression case is given by

$$\hat{f}(x_0) = x_0^T \hat{\beta}$$

where  $\hat{\beta} = (X^T X)^{-1} X^T y$ . Then we can simply write

$$\hat{f}(x_0) = \sum_{i=1}^{N} (x_0^T (X^T X)^{-1}) X^T)_i y_i.$$

Hence

$$l_i(x_0; \mathcal{X}) = (x_0^T (X^T X)^{-1} X^T)_i.$$

In the k-nearest-neighbor representation, we have

$$\hat{f}(x_0) = \sum_{i=1}^{N} \frac{y_i}{k} \mathbb{1}_{\{x_i \in N_k(x_0)\}}$$

where  $N_k(x_0)$  represents the set of k-nearest-neighbors of  $x_0$ . Clearly,

$$l_i(x_0; \mathcal{X}) = \frac{1}{k} \mathbb{1}_{\{x_i \in N_k(x_0)\}}$$

(b)

$$E_{\mathcal{Y}|\mathcal{X}}[(f(x_0) - \hat{f}(x_0))^2] = E_{\mathcal{Y}|\mathcal{X}}[(f(x_0) - E_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)) + E_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)) - \hat{f}(x_0))^2]$$
  
$$= E_{\mathcal{Y}|\mathcal{X}}[(f(x_0) - E_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)))^2] + E_{\mathcal{Y}|\mathcal{X}}[(E_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)) - \hat{f}(x_0))^2]$$
  
$$+ 2E_{\mathcal{Y}|\mathcal{X}}[(f(x_0) - E_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)))(E_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)) - \hat{f}(x_0))]$$
  
$$= \operatorname{Var}_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)) + \operatorname{Bias}_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0))^2$$

(c) Here we simplify the notation  $E_{\mathcal{Y},\mathcal{X}}$  to E.

$$E[(f(x_0) - \hat{f}(x_0))^2] = E[(f(x_0) - E(\hat{f}(x_0)) + E(\hat{f}(x_0)) - \hat{f}(x_0))^2]$$
  
=  $E[(f(x_0) - E(\hat{f}(x_0)))^2] + E[(E(\hat{f}(x_0)) - \hat{f}(x_0))^2]$   
+ $2E[(f(x_0) - E(\hat{f}(x_0)))(E(\hat{f}(x_0)) - \hat{f}(x_0))]$   
=  $Var(\hat{f}(x_0)) + Bias(\hat{f}(x_0))^2$ 

(d) In (b) we have

$$E[(f(x_0) - \hat{f}(x_0))^2] = E_{\mathcal{X}}(E_{\mathcal{Y}|\mathcal{X}}[(f(x_0) - \hat{f}(x_0))^2])$$
  
$$= E_{\mathcal{X}}(\operatorname{Var}_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)) + \operatorname{Bias}_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0))^2)$$
  
$$= E_{\mathcal{X}}(\operatorname{Var}_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0))) + E_{\mathcal{X}}(\operatorname{Bias}_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0))^2)$$
(1)

and in (c) we have

$$E[(f(x_0) - \hat{f}(x_0))^2] = \operatorname{Var}(\hat{f}(x_0)) + \operatorname{Bias}(\hat{f}(x_0))^2$$
(2)

Comparing (1) and (2) we have

$$E_{\mathcal{X}}(\operatorname{Bias}(\hat{f}(x_0))^2) - \operatorname{Bias}(\hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) - E_{\mathcal{X}}(\operatorname{Var}_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)))$$
$$= \operatorname{Var}_{\mathcal{X}}(E_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)))$$
$$\geq 0$$

The above inequality suggests that the expectation of conditional squared bias of  $\hat{f}(x_0)$  is always greater than or equal to the squared bias of  $\hat{f}(x_0)$ , and the difference is equal to  $\operatorname{Var}_{\mathcal{X}}(E_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)))$ .

**Ex. 2.8**: Compare the classification performance of linear regression and k-nearest neighbor classification on the **zipcode** data. In particular, consider only the 2's and 3's, and k = 1, 3, 5, 7 and 15. Show both the training and test error for each choice. The **zipcode** data are available from the book website **www-stat.stanford.edu/ElemStatLearn**. (10 pts)

**Solution:** The implementation in R (see appendix) and graphs are attached. It's clear that for k = 1, 3, 5, 7 and 15, the k-nearest neighbor has a smaller classification error for the testing dataset compared to that of the linear regression. Also note that the k-nearest neighbor classification error increases with k for both training and testing datasets.

| Model      | Training error | Test error |
|------------|----------------|------------|
| Linear Reg | 0.0058         | 0.0412     |
| 1-NN       | 0.0000         | 0.0247     |
| 3-NN       | 0.0050         | 0.0302     |
| 5-NN       | 0.0058         | 0.0302     |
| 7-NN       | 0.0065         | 0.0330     |
| 15-NN      | 0.0094         | 0.0385     |

**Ex. 2.9**: Consider a linear regression model with p parameters, fit by least squares to a set of training data  $(x_1, y_1), \ldots, (x_N, y_N)$  drawn at random from a population. Let  $\hat{\beta}$  be the least squares estimate. Suppose we have some test data  $(\tilde{x}_1, \tilde{y}_1), \ldots, (\tilde{x}_M, \tilde{y}_M)$  drawn at



Figure 1: Classification errors for different methods on zipcode data.

random from the same population as the training data. If  $R_{tr}(\beta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \beta^T x_i)^2$  and  $R_{te}(\beta) = \frac{1}{M} \sum_{i=1}^{M} (\tilde{y}_i - \beta^T \tilde{x}_i)^2$ , prove that

$$E[R_{tr}(\hat{\beta})] \le E[R_{te}(\hat{\beta})]_{t}$$

where the expectations are over all that is random in each expression. (10 pts) **Solution:** Consider two cases: (i) If  $N \leq M$ :

$$\begin{split} E[R_{te}(\hat{\beta})] &= E\left(\frac{1}{M}\sum_{i=1}^{M}(\tilde{y}_{i}-\hat{\beta}^{T}\tilde{x}_{i})^{2}\right) \\ &= \frac{1}{M}\sum_{i=1}^{M}E(\tilde{y}_{i}-\hat{\beta}^{T}\tilde{x}_{i})^{2} \\ &\geq \frac{1}{M}\sum_{i=1}^{M}E(\tilde{y}_{i}-\tilde{\beta}^{T}\tilde{x}_{i})^{2} \quad \text{where } \tilde{\beta} = \underset{\beta}{\operatorname{argmin}}\frac{1}{M}\sum_{i=1}^{M}E(\tilde{y}_{i}-\beta^{T}\tilde{x}_{i})^{2} \\ &= E(\tilde{y}_{1}-\tilde{\beta}^{T}\tilde{x}_{1})^{2} \quad \because (\tilde{x}_{i},\tilde{y}_{i})\text{'s are i.i.d} \\ &= \frac{1}{N}\sum_{i=1}^{N}E(\tilde{y}_{i}-\tilde{\beta}^{T}\tilde{x}_{i})^{2} \quad \text{i.i.d again} \\ &\geq \frac{1}{N}\sum_{i=1}^{N}E(\tilde{y}_{i}-\tilde{\beta}^{T}\tilde{x}_{i})^{2} \quad \text{where } \tilde{\beta}' = \underset{\beta}{\operatorname{argmin}}\frac{1}{N}\sum_{i=1}^{N}E(\tilde{y}_{i}-\beta^{T}\tilde{x}_{i})^{2} \\ &= \frac{1}{N}\sum_{i=1}^{N}E(y_{i}-\tilde{\beta}^{T}x_{i})^{2} \quad \because (\tilde{x}_{i},\tilde{y}_{i})\text{'s and } (x_{i},y_{i})\text{'s are i.i.d} \\ &= E\left(\frac{1}{N}\sum_{i=1}^{N}(y_{i}-\tilde{\beta}^{T}x_{i})^{2}\right) \quad \text{where } \hat{\beta} = \underset{\beta}{\operatorname{argmin}}\frac{1}{N}\sum_{i=1}^{N}E(y_{i}-\beta^{T}x_{i})^{2} \\ &= E[R_{tr}(\hat{\beta})] \end{split}$$

(ii) If N > M:

$$E[R_{tr}(\hat{\beta})] = E\left(\frac{1}{N}\sum_{i=1}^{N}(y_{i}-\hat{\beta}^{T}x_{i})^{2}\right)$$

$$= \frac{1}{N}\sum_{i=1}^{N}E(y_{i}-\hat{\beta}^{T}x_{i})^{2}$$

$$= E(y_{1}-\hat{\beta}^{T}x_{1})^{2}$$

$$= \frac{1}{M}\sum_{i=1}^{M}E(y_{i}-\hat{\beta}^{T}x_{i})^{2}$$

$$\leq \frac{1}{M}\sum_{i=1}^{M}E(y_{i}-\hat{\beta}^{T}x_{i})^{2} \quad \text{where } \hat{\beta}' = \operatorname*{argmin}_{\beta}\frac{1}{M}\sum_{i=1}^{M}E(y_{i}-\beta^{T}x_{i})^{2}$$

$$= \frac{1}{M}\sum_{i=1}^{M}E(\tilde{y}_{i}-\hat{\beta}^{T}\tilde{x}_{i})^{2}$$

$$\leq \frac{1}{M}\sum_{i=1}^{M}E(\tilde{y}_{i}-\hat{\beta}^{T}\tilde{x}_{i})^{2}$$

$$= E\left(\frac{1}{M}\sum_{i=1}^{M}(\tilde{y}_{i}-\hat{\beta}^{T}\tilde{x}_{i})^{2}\right)$$

$$= E[R_{te}(\hat{\beta})]$$