
STT 873 HW1 (Solution Keys)

This HW is due on Sep 18th.

Ex. 2.2: Show how to compute the Bayes decision boundary for the simulatoin example in
Figure 2.5. (10 pts)

Solution: The Bayes classifier is

Ĝ(X) = argmax
g∈G

P (g|X = x)

In this two-class example ORANGE and BLUE, the decision boundary is the set where

P (g = BLUE|X = x) = P (g = ORANGE|X = x) =
1

2

By the Bayes rule, this is equivalent to the set of points where

P (X = x|g = BLUE)P (g = BLUE) = P (X = x|g = ORANGE)P (g = ORANGE)

and since we know P (g) and P (X = x|g), the decision boundary can be calculated explicitly.

Ex. 2.7: Suppose we have a sample of N pairs xi, yi drawn i.i.d. from the distribution
characterized as follows:

xi ∼ h(x), the design density

yi = f(xi) + εi, f is the regression function

εi ∼ (0, σ2) mean zero, variance σ2

We construct an estimator for f linear in the yi,

f̂(x0) =
N∑
i=1

li(x0;X )yi,

where the weights li(x0;X ) do not depend on the yi, but do depend on the entire training
sequence of xi, denoted here by X .

(a) Show that linear regression and k-nearest-neighbor regression are members of this
class of estimators. Describe explicitly the weights li(x0;X ) in each of these cases. (3
pts)

(b) Decompose the conditional mean-squared error

EY|X (f(x0)− f̂(x0))
2

into a conditional squared bias and a conditional variance component.
Like X ,Y represents the entire training sequence of yi. (2 pts)
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(c) Decompose the (unconditional) mean-squared error

EY,X (f(x0)− f̂(x0))
2

intor a squared bias and a variance component. (2 pts)

(d) Establish a relationship between the squared biases and variances in the above two
cases. (3 pts)

Solution:

(a) Recall that the estimator for f in the linear regression case is given by

f̂(x0) = xT0 β̂

where β̂ = (XTX)−1XTy. Then we can simply write

f̂(x0) =
N∑
i=1

(xT0 (XTX)−1)XT )iyi.

Hence
li(x0;X ) = (xT0 (XTX)−1XT )i.

In the k-nearest-neighbor representation, we have

f̂(x0) =
N∑
i=1

yi
k

1{xi∈Nk(x0)}

where Nk(x0) represents the set of k-nearest-neighbors of x0. Clearly,

li(x0;X ) =
1

k
1{xi∈Nk(x0)}

(b)

EY|X [(f(x0)− f̂(x0))
2] = EY|X [(f(x0)− EY|X (f̂(x0)) + EY|X (f̂(x0))− f̂(x0))

2]

= EY|X [(f(x0)− EY|X (f̂(x0)))
2] + EY|X [(EY|X (f̂(x0))− f̂(x0))

2]

+2EY|X [(f(x0)− EY|X (f̂(x0)))(EY|X (f̂(x0))− f̂(x0))]

= VarY|X (f̂(x0)) + BiasY|X (f̂(x0))
2

(c) Here we simplify the notation EY,X to E.

E[(f(x0)− f̂(x0))
2] = E[(f(x0)− E(f̂(x0)) + E(f̂(x0))− f̂(x0))

2]

= E[(f(x0)− E(f̂(x0)))
2] + E[(E(f̂(x0))− f̂(x0))

2]

+2E[(f(x0)− E(f̂(x0)))(E(f̂(x0))− f̂(x0))]

= Var(f̂(x0)) + Bias(f̂(x0))
2
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(d) In (b) we have

E[(f(x0)− f̂(x0))
2] = EX (EY|X [(f(x0)− f̂(x0))

2])

= EX (VarY|X (f̂(x0)) + BiasY|X (f̂(x0))
2)

= EX (VarY|X (f̂(x0))) + EX (BiasY|X (f̂(x0))
2) (1)

and in (c) we have

E[(f(x0)− f̂(x0))
2] = Var(f̂(x0)) + Bias(f̂(x0))

2 (2)

Comparing (1) and (2) we have

EX (Bias(f̂(x0))
2)− Bias(f̂(x0))

2 = Var(f̂(x0))− EX (VarY|X (f̂(x0)))

= VarX (EY|X (f̂(x0)))

≥ 0

The above inequality suggests that the expectation of conditional squared bias of f̂(x0)
is always greater than or equal to the squared bias of f̂(x0), and the difference is equal
to VarX (EY|X (f̂(x0))).

Ex. 2.8: Compare the classification performance of linear regression and k-nearest neigh-
bor classification on the zipcode data. In particular, consider only the 2’s and 3’s, and
k = 1, 3, 5, 7 and 15. Show both the training and test error for each choice. The zipcode
data are available from the book website www-stat.stanford.edu/ElemStatLearn. (10
pts)

Solution: The implementation in R (see appendix) and graphs are attached. It’s clear
that for k = 1, 3, 5, 7 and 15, the k-nearest neighbor has a smaller classification error for
the testing dataset compared to that of the linear regression. Also note that the k-nearest
neighbor classification error increases with k for both training and testing datasets.

Model Training error Test error
Linear Reg 0.0058 0.0412

1-NN 0.0000 0.0247
3-NN 0.0050 0.0302
5-NN 0.0058 0.0302
7-NN 0.0065 0.0330
15-NN 0.0094 0.0385

Ex. 2.9: Consider a linear regression model with p parameters, fit by least squares to a
set of training data (x1, y1), . . . , (xN , yN) drawn at random from a population. Let β̂ be
the least squares estimate. Suppose we have some test data (x̃1, ỹ1),. . . ,(x̃M , ỹM) drawn at
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Figure 1: Classification errors for different methods on zipcode data.

random from the same population as the training data. If Rtr(β) = 1
N

∑N
i=1(yi−βTxi)2 and

Rte(β) = 1
M

∑M
i=1(ỹi − βT x̃i)2, prove that

E[Rtr(β̂)] ≤ E[Rte(β̂)],

where the expectations are over all that is random in each expression. (10 pts)
Solution: Consider two cases:
(i) If N ≤M :

E[Rte(β̂)] = E

(
1

M

M∑
i=1

(ỹi − β̂T x̃i)2
)

=
1

M

M∑
i=1

E(ỹi − β̂T x̃i)2

≥ 1

M

M∑
i=1

E(ỹi − β̃T x̃i)2 where β̃ = argmin
β

1

M

M∑
i=1

E(ỹi − βT x̃i)2

= E(ỹ1 − β̃T x̃1)2 ∵ (x̃i, ỹi)’s are i.i.d

=
1

N

N∑
i=1

E(ỹi − β̃T x̃i)2 i.i.d again

≥ 1

N

N∑
i=1

E(ỹi − β̃
′T
x̃i)

2 where β̃
′
= argmin

β

1

N

N∑
i=1

E(ỹi − βT x̃i)2

=
1

N

N∑
i=1

E(yi − β̂Txi)2 ∵ (x̃i, ỹi)’s and (xi, yi)’s are i.i.d

= E

(
1

N

N∑
i=1

(yi − β̂Txi)2
)

where β̂ = argmin
β

1

N

N∑
i=1

E(yi − βTxi)2

= E[Rtr(β̂)]
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(ii) If N > M :

E[Rtr(β̂)] = E

(
1

N

N∑
i=1

(yi − β̂Txi)2
)

=
1

N

N∑
i=1

E(yi − β̂Txi)2

= E(y1 − β̂Tx1)2

=
1

M

M∑
i=1

E(yi − β̂Txi)2

≤ 1

M

M∑
i=1

E(yi − β̂
′T
xi)

2 where β̂
′
= argmin

β

1

M

M∑
i=1

E(yi − βTxi)2

=
1

M

M∑
i=1

E(ỹi − β̃T x̃i)2

≤ 1

M

M∑
i=1

E(ỹi − β̂T x̃i)2

= E

(
1

M

M∑
i=1

(ỹi − β̂T x̃i)2
)

= E[Rte(β̂)]
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