STT 873 HW1 (Solution Keys)

This HW is due on Sep 18th.

Ex. 2.2: Show how to compute the Bayes decision boundary for the simulatoin example in
Figure 2.5. (10 pts)

Solution: The Bayes classifier is

G(X) = argmax P(g|X = )

geg

In this two-class example ORANGE and BLUE, the decision boundary is the set where
P(g = BLUE|X = ) = P(g = ORANGE|X — ) — %
By the Bayes rule, this is equivalent to the set of points where
P(X = z|g = BLUE)P(g = BLUE) = P(X = z|g = ORANGE)P(g = ORANGE)
and since we know P(g) and P(X = x|g), the decision boundary can be calculated explicitly.

Ex. 2.7: Suppose we have a sample of N pairs z;, y; drawn i.i.d. from the distribution
characterized as follows:

x; ~ h(z), the design density
y; = f(x;) +e;, fis the regression function
g; ~ (0,0%) mean zero, variance o2

We construct an estimator for f linear in the y;,

N

Flao) = lilwo; X)yi,

i=1

where the weights [;(x¢; X) do not depend on the y;, but do depend on the entire training
sequence of z;, denoted here by X.

(a) Show that linear regression and k-nearest-neighbor regression are members of this
class of estimators. Describe explicitly the weights [;(xo; X) in each of these cases. (3

pts)

(b) Decompose the conditional mean-squared error

Ey|X(f(fU0) - f(xo))Q

into a conditional squared bias and a conditional variance component.
Like X, ) represents the entire training sequence of y;. (2 pts)
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(c) Decompose the (unconditional) mean-squared error

By x(f(wo) — f($0))2
intor a squared bias and a variance component. (2 pts)

(d) Establish a relationship between the squared biases and variances in the above two
cases. (8 pts)

Solution:

(a) Recall that the estimator for f in the linear regression case is given by

f( 0) =, e
where 3 = (XTX)"'XTy. Then we can simply write

N

flzo) =Y (a5 (XTX)HX )iy

i=1
Hence
li(zo; X) = (20 (XTX)71XT),.
In the k-nearest-neighbor representation, we have
N

A y’L
f(wo) = & HoieNi(@o))
=1

where Ni(zg) represents the set of k-nearest-neighbors of zy. Clearly,

1
li(l'o; X) = El{xiENk(xO)}

Eyix[(f(x0) = f(20))’] = Eyx|(f(x0) = Eyx(f(z0)) + Eyja(f(0)) — f(20))’]
= Byx[(f(w0) = Eyx(f(20)))°] + Eyix[(Eya(f(20)) — f(0))?]
+2Eyx[(f(x0) — Eyix(f(20))) (Eyjx (f(z0)) — f(0))]
= Vary|X(f(x0)) + Biasyx (f f(20))*

(c) Here we simplify the notation Ey » to E.

E[(f(x0) = f(0))’] = E[(f(xo —E(Jf(fo



(d) In (b) we have

El(f(z0) — f(20)?] = Ex(BEyx[(f(zo) — f(w0))?)
= Ex(Varyx (Jf(l'O)) + Biasy\k(f(ﬂﬂo))f)
= Ex(Varyx(f(z0))) + Ex(Biasyjx (f(0))?) (1)
and in (c) we have
B[(f(z0) — f(20))?] = Var(f(z0)) + Bias(f(z0)) (2)
Comparing (1) and (2) we have
Ex(Bias(f(z0))?) — Bias(f (zo))* Var(f(zo)) — Ex(Varyx(f(20)))
= Vary(Eyx(f(20)))
> 0

The above inequality suggests that the expectation of conditional squared bias of f (o)
is always greater than or equal to the squared bias of f(z), and the difference is equal

to Varx (Eyx(f(0))).

Ex. 2.8: Compare the classification performance of linear regression and k-nearest neigh-
bor classification on the zipcode data. In particular, consider only the 2’s and 3’s, and
k=1,3,5,7 and 15. Show both the training and test error for each choice. The zipcode
data are available from the book website www-stat.stanford.edu/ElemStatLearn. (10

pts)

Solution: The implementation in R (see appendix) and graphs are attached. It’s clear

that for k£ =

1,3,5,7 and 15, the k-nearest neighbor has a smaller classification error for

the testing dataset compared to that of the linear regression. Also note that the k-nearest
neighbor classification error increases with &k for both training and testing datasets.

Model

Training error

Test error

Linear Reg
1-NN
3-NN
5-NN
7-NN
15-NN

0.0058
0.0000
0.0050
0.0058
0.0065
0.0094

0.0412
0.0247
0.0302
0.0302
0.0330
0.0385

Ex. 2.9: Consider a linear regression model with p parameters, fit by least squares to a

set of training data (z1,v1),...,

(xy,yn) drawn at random from a population. Let 3 be
the least squares estimate. Suppose we have some test data (Z1,71),. ..

(Zpr, Yy ) drawn at
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Figure 1: Classification errors for different methods on zipcode data.

random from the same population as the training data. If Ry.(8) = % Zﬁl(yz — BT2;)? and
Ri(B) = Zfil(gz — BTZ;)?, prove that

A N

E[Ry(8)] < E[Ree(B)],

where the expectations are over all that is random in each expression. (10 pts)
Solution: Consider two cases:

(i) If N < M:
5 1 — .
ElR.(B)] = E (M > @i— 5Tfi)2)
i=1
LM
— S AT )2
= M;E@z - B&:)
1 < - . 1 M
2 g L B FTR)t where = axgmin g7 5 B — 675
= E(j —"%) (&4, 7;)’s are 1.i.d
N
= = Z B(y; — '%;)? i.i.d again
NS
1 & - . 1 X
> N ZZI E(@Z — B/Ti’i)2 where ﬁl = arg;nin N ZZI E(?jz o BT@V
1 .
- N ; E(y; — " x;)? (%4, 9:)'s and (z4,v;)’s are i.i.d
N N
B LY - 7)) where §— argmin + 3" B(y - 87ar)
N i=1 B N i—1
= E[Rtr(ﬁ ]



(i) If N > M:

~

E[RM"(ﬂ)]

IN

IN

M
N 1
where § = argmin % Z E(y; — Bl x;)?
A i=1



