STT 873 HW1

This HW is due on Sep 18th.

Ex. 2.2: Show how to compute the Bayes decision boundary for the simulatoin example in
Figure 2.5.

Ex. 2.7: Suppose we have a sample of N pairs z;, y; drawn i.i.d. from the distribution
characterized as follows:

x; ~ h(z), the design density
y; = f(x;) +e;, [is the regression function

g; ~ (0,0%) mean zero, variance o2

We construct an estimator for f linear in the y;,

N

f:(%) = Zli(IO; X)ym

=1

where the weights [;(z; X) do not depend on the y;, but do depend on the entire training
sequence of x;, denoted here by X.

(a) Show that linear regression and k-nearest-neighbor regression are members of this
class of estimators. Describe explicitly the weights [;(xo; X') in each of these cases.

(b) Decompose the conditional mean-squared error

~

Eyuc(f(xo) - f(xo))2

into a conditional squared bias and a conditional variance component.
Like X', ) represents the entire training sequence of y;.

(c) Decompose the (unconditional) mean-squared error

~

Ey x(f(xo) — f(xo))2
intor a squared bias and a variance component.

(d) Establish a relationship between the squared biases and variances in the above two
cases.



Ex. 2.8: Compare the classification performance of linear regression and k-nearest neigh-
bor classification on the zipcode data. In particular, consider only the 2’s and 3’s, and
k=1,3,57 and 15. Show both the training and test error for each choice. The zipcode
data are available from the book website www-stat.stanford.edu/ElemStatLearn.

Ex. 2.9: Consider a linear regression model with p parameters, fit by least squares to a
set of training data (z1,v1),...,(xy,yn) drawn at random from a population. Let 3 be
the least squares estimate. Suppose we have some test data (Z1,71),...,(Zar, Jar) drawn at
random from the same population as the training data. If Ry, (8) = + SV (g — 8Tx)? and

Rie(B) = ﬁ Zi]‘il(ﬂi — BT%;)?, prove that

N N

E[Rtr(ﬁ)] < E[Rte(ﬁﬂa

where the expectations are over all that is random in each expression.



