STT 873 HW1

This HW is due on Sep 18th.

Ex. 2.2: Show how to compute the Bayes decision boundary for the simulatoin example in Figure 2.5.

Ex. 2.7: Suppose we have a sample of N pairs x_{i}, y_{i} drawn i.i.d. from the distribution characterized as follows:

$$
\begin{aligned}
x_{i} & \sim h(x), \text { the design density } \\
y_{i} & =f\left(x_{i}\right)+\varepsilon_{i}, f \text { is the regression function } \\
\varepsilon_{i} & \sim\left(0, \sigma^{2}\right) \text { mean zero, variance } \sigma^{2}
\end{aligned}
$$

We construct an estimator for f linear in the y_{i},

$$
\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N} l_{i}\left(x_{0} ; \mathcal{X}\right) y_{i}
$$

where the weights $l_{i}\left(x_{0} ; \mathcal{X}\right)$ do not depend on the y_{i}, but do depend on the entire training sequence of x_{i}, denoted here by \mathcal{X}.
(a) Show that linear regression and k-nearest-neighbor regression are members of this class of estimators. Describe explicitly the weights $l_{i}\left(x_{0} ; \mathcal{X}\right)$ in each of these cases.
(b) Decompose the conditional mean-squared error

$$
E_{\mathcal{Y} \mid \mathcal{X}}\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}
$$

into a conditional squared bias and a conditional variance component.
Like \mathcal{X}, \mathcal{Y} represents the entire training sequence of y_{i}.
(c) Decompose the (unconditional) mean-squared error

$$
E_{\mathcal{Y}, \mathcal{X}}\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}
$$

intor a squared bias and a variance component.
(d) Establish a relationship between the squared biases and variances in the above two cases.

Ex. 2.8: Compare the classification performance of linear regression and k-nearest neighbor classification on the zipcode data. In particular, consider only the 2's and 3's, and $k=1,3,5,7$ and 15 . Show both the training and test error for each choice. The zipcode data are available from the book website www-stat.stanford.edu/ElemStatLearn.

Ex. 2.9: Consider a linear regression model with p parameters, fit by least squares to a set of training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ drawn at random from a population. Let $\hat{\beta}$ be the least squares estimate. Suppose we have some test data $\left(\tilde{x}_{1}, \tilde{y}_{1}\right), \ldots,\left(\tilde{x}_{M}, \tilde{y}_{M}\right)$ drawn at random from the same population as the training data. If $R_{t r}(\beta)=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\beta^{T} x_{i}\right)^{2}$ and $R_{t e}(\beta)=\frac{1}{M} \sum_{i=1}^{M}\left(\tilde{y}_{i}-\beta^{T} \tilde{x}_{i}\right)^{2}$, prove that

$$
E\left[R_{t r}(\hat{\beta})\right] \leq E\left[R_{t e}(\hat{\beta})\right]
$$

where the expectations are over all that is random in each expression.

